Refine
Language
- English (2) (remove)
Keywords
- Analyse (math) (2)
- Analysis (math) (2)
- Conference (2)
- Fußgänger (2)
- Konferenz (2)
- Pedestrian (2)
- Accident (1)
- Accident prevention (1)
- Accident rate (1)
- Adult (1)
- Autobahn (1)
- Behaviour (1)
- Benutzung (1)
- Cause (1)
- Child (1)
- Compatibility (1)
- Delivery vehicle (1)
- Deutschland (1)
- Driver (1)
- Driver assistance system (1)
- Erwachsener (1)
- Fahrer (1)
- Fahrerassistenzsystem (1)
- Fahrleistung (1)
- Germany (1)
- Kind (1)
- Kleintransporter (1)
- Kompatibilität (1)
- Landstraße (1)
- Motorway (1)
- Prüfverfahren (1)
- Rural road (1)
- Safety belt (1)
- Schweregrad (Unfall (1)
- Severity (accid (1)
- Sicherheitsgurt (1)
- Test method (1)
- Unfall (1)
- Unfallhäufigkeit (1)
- Unfallverhütung (1)
- Ursache (1)
- Use (1)
- Vehicle mile (1)
- Verhalten (1)
- Verletzung) (1)
- injury) (1)
Institute
Safety of light goods vehicles - findings from the German joint project of BASt, DEKRA, UDV and VDA
(2011)
Light goods vehicles (LGVs) are an important part of the vehicle fleet, providing a vital component in the European transportation system. On the other hand, LGVs are in the focus of public discussion regarding road safety. In order to analyse the accident situation of LGVs in an objective manner, Federal Highway Research Institute (BASt), VDA, DEKRA and German Insurers Accident Research (UDV) launched a joint project. The aim of this project, which will be finished by mid of 2011, is to identify reasonable measures which will further improve the safety of LGVs. For the first time, these partners jointly together conducted a research project and put together their know-how in accident research. Analyses are based on real-life accident data from the GIDAS database, the Accident Database of UDV (UDB), the DEKRA database and national statistics. The findings deliver answers to questions within the arena of future legislative actions and consumer protection activities. The analyses of databases cover areas of primary and secondary safety of LGVs with a special focus on advanced driver assistance systems (ADAS), driver behaviour as well as partner and occupant protection. Key figures from national statistics are used to highlight hotspots of accidents of LGVs in Germany. Finally, the proposed countermeasures are assessed regarding their potential effectiveness. Amongst others, the results show that the accident situation of LGVs is very similar to that of passenger cars. Noteworthy variations could be found in collisions with pedestrians, at reversing and regarding accident causes. Occupant safety of LGVs is on a higher level compared to cars. Results indicate that seatbelt use is on a significantly lower level compared to cars. This leads to higher-than-average injury risk for unbelted LGV occupants. When it comes to partner protection, there are problems with compatibility at LGVs. For car occupants there is a very high injury risk when colliding with a LGV. It indicates that higher passive safety test standards for LGVs would be counterproductive if they further increase stiffness of LGVs. The analysis of LGV-pedestrian accidents shows that pedestrian kinematic differs significantly from car-pedestrian accidents. At this point, existing pedestrian related test standards developed for cars cannot be adopted to LGVs. When it comes to active safety, ESC proved its effectiveness once again. Beyond that, rear view cameras, advanced emergency braking systems and lane departure warning systems show a safety potential, too. In addition to any technical countermeasures previously discussed, the importance of the driver behavior and attitude regarding the accident risk was investigated. In order to develop successful actions it is important to understand the main target population. In the case of LGV especially the crafts business and smaller companies are the major contributors the safety issue.
Proposal for a test procedure of assistance systems regarding preventive pedestrian protection
(2011)
This paper is showing a proposal for a test procedure regarding preventive pedestrian protection based on accident analysis. Over the past years pedestrian protection has become an increasing importance also during the development phase of new vehicles. After a phase of focusing on secondary safety, there are current activities to detect a possible collision by assistance systems. Such systems have the task to inform the driver and/or automatically activate the brakes. How practical is such a system? In which kind of traffic situations will it work? How is it possible to check the effectiveness of such a system? To test the effectiveness, currently there are no generally approved identifiable procedures. It is reasonable that such a test should be based on real accidents. The test procedure should be designed to test all systems, independent of the system- working principle. The vFSS group (advanced Forward-looking Safety Systems) was founded to develop a proposal for a technology independent test procedure, which reflects the real accident situation. This contribution is showing the results of vFSS. The developed test procedure focuses on accidents between passenger cars and pedestrians. The results are based on analysis results of in-depth databases of GIDAS, German insurers and DEKRA and added by analysis of national and international statistics. The in-depth analysis includes many pre-crash situations with several influencing factors. The factors are e. g. speed of the car, speed of the pedestrian, moving direction and a possible obscuration of the pedestrian by an object. The results comprise also the different situations of adults and children. Furthermore, they include details regarding influence of the lighting conditions (daylight or night) especially with respect to the accident consequences. In fact, more accidents happen at daylight, but fatal accidents are more often at night. A clustering of parameter combinations was found which represents typical accident scenarios. There are six typical accident scenarios which were merged in four test scenarios. The test scenarios are varying the starting position of the pedestrian, the pedestrian size (adult or child) and the speed of the pedestrian, whereas the speed of the car will not be varied. To ensure the independency from used sensing technologies it is necessary to use a suitable dummy. For example, if sensors are based on infrared, the dummy should emit the temperature of a human being. The test procedure will identify the collision speed as the key parameter for assessing the effectiveness of the tested system. The collision speed is defined as the reduction between initial test speed of the car and impact speed. The assessment of the speed reduction value regarding the safety benefit, however, will be part of a separate procedure.