Refine
Keywords
- Child (3)
- Kind (3)
- Anfahrversuch (2)
- Conference (2)
- Deutschland (2)
- Europa (2)
- Europe (2)
- Germany (2)
- Impact test (veh) (2)
- Injury (2)
Institute
- Sonstige (3) (remove)
The main objective of EC CASPER research project is to reduce fatalities and injuries of children travelling in cars. Accidents involving children were investigated, modelling of human being and tools for dummies were advanced, a survey for the diagnosis of child safety was carried out and demands and applications were analysed. From the many research tasks of the CASPER project, the intention of this paper is to address the following: • In-depth investigation of accidents and accident reconstruction. These will provide important points for the injury risk curve, in order to improve it. Different accident investigation teams collected data from real road accidents, involving child car passengers, in five different European countries. Then, a selection of the most appropriate cases for the injury risk curve and the purposes of the project was made for an in-depth analysis. The final stage of this analysis was to conduct an accident reconstruction to validate the results obtained. The in-depth analysis included on-scene accident investigation, creating virtual simulations of the accident/possible reconstruction, and conducting the reconstruction. In the cases of successful reconstructions, new points were introduced to the injury risk curves. Accident reconstructions of selected cases were carried out in test laboratories as the next step following in-depth road accident investigation. These cases were reconstructed using similar child restraint systems (CRS) and the same type make and model as in the real accidents. Reconstructing real cases has several limitations, such as crash angle, cars" approximation paths and crash speed. However, a few changes and applications on the testing conditions were applied to reduce the limitations and improved the representations of the real accidents. After conducting the reconstructions, a comparison between the deformations of the cars on the real accident and the vehicles from the reconstructions was made. Additionally, a correlation between the data captured from the dummies and the injury data from the real accident was sought. This finalises an in-depth analysis of the accident, which will provide new relevant points to the injury risk curve. The CASPER project conducted a large research programme on child safety. On technical points, a promising research area is the developing injury risk curves as a result of in-depth accident investigations and reconstructions. This abstract was written whilst the project was not yet finished and final results are not yet known, but they will be available by the time of the conference. All the works and findings will not necessarily be integrated in the industrial versions of evaluation tools as the CASPER project is a research program.
The European Enhanced Vehicle-safety Committee wants to promote the use of more biofidelic child dummies and biomechanical based tolerance limits in regulatory and consumer testing. This study has investigated the feasibility and potential impact of Q-dummies and new injury criteria for child restraint system assessment in frontal impact. European accident statistics have been reviewed for all ECE-R44 CRS groups. For frontal impact, injury measures are recommended for the head, neck, chest and abdomen. Priority of body segment protection depends on the ECE-R44 group. The Q-dummy family is able to reflect these injuries, because of its biofidelity performance and measurement capabilities for these body segments. Currently, the Q0, Q1, Q1.5, Q3 and Q6 are available representing children of 0, 1, 1.5, 3 and 6 years old. These Q-dummies cover almost all dummy weight groups as defined in ECE-R44. Q10, representing a 10 year-old child, is under development. New child dummy injury criteria are under discussion in EEVC WG12. Therefore, the ECE-R44 criteria are assessed by comparing the existing P-dummies and new Q-dummies in ECE-R44 frontal impact sled tests. In total 300 tests covering 30 CRSs of almost all existing child seat categories are performed by 11 European organizations. From this benchmark study, it is concluded that the performance of the Q-dummy family is good with respect to repeatability of the measurement signals and the durability of the dummies. Applying ECE-R44 criteria, the first impression is that results for P- and Q-dummy are similar. For child seat evaluation the potential merits of the Q-dummy family lie in the extra measurement possibilities of these dummies and in the more biofidelic response.
The European CASPER (Child Advanced Safety Project for European Roads) project studying car child safety includes a sociological approach in order to have a better understanding of the behaviour of parents driving children under 12 years old. A questionnaire was distributed via the internet in Europe with 998 parents (representing 1638 children) from 22 European countries responding. The results inform on the way parents secure their children during a car trip. Many parents did not control how their children were installed in the child restraint system (CRS). A toddler was more likely to travel into a child seat than an older child was. Regarding misuse situations, an important part of the participants did not think that they could make mistakes when fixing the child seat to the car (26%) or when placing the child into the seat (39%). This leaves an important field of action especially by communication via different media and in the CRS sale outlets.