Injury severity of e.g. pedestrians or bikers after crashes with cars that are reversing is almost unknown. However, crash victims of these injuries can frequently be seen in emergency departments and account for a large amount of patients every year. The objective of this study is to analyze injury severity of patients that were crashed into by reversing cars. The Hannover Medical School local accident research unit prospectively documented 43,000 road traffic accidents including 234 crashes involving reversing cars. Injury severity including the abbreviated injury scale (AIS) and the maximum abbreviated injury scale (MAIS) was analyzed as well as the location of the accident. As a result 234 accidents were included into this study. Pedestrians were injured in 141 crashes followed by 70 accidents involving bikers. The mean age of all crash victims was 57 -± 23 years. Most injuries took place on straight stretches (n = 81) as well as parking areas (n = 59), entries (n = 36) or crossroads (n = 24). The AIS of the lower extremities was highest followed by the upper extremities. The AIS of the neck was lowest. The mean MAIS was 1.3 -± 0.6. The paper concludes that the lower extremities show the highest risk to become injured during accidents with reversing cars. However, the risk of severe injuries is likely low.
While cyclists and pedestrians are known to be at significant risk for severe injuries when exposed to road traffic accidents (RTAs) involving trucks, little is known about RTA injury risk for truck drivers. The objective of this study is to analyze the injury severity in truck drivers following RTAs. Between 1999 and 2008 the Hannover Medical School Accident Research Unit prospectively documented 43,000 RTAs involving 582 trucks. Injury severity including the abbreviated injury scale (AIS) and the maximum abbreviated injury scale (MAIS) were analyzed. Technical parameters (e.g. delta-v, direction of impact), the location of accident, and its dependency on the road type were also taken into consideration. The results show that the safety of truck drivers is assured by their vehicles, the consequence being that the risk of becoming injured is likely to be low. However, the legs especially are at high risk for severe injuries during RTAs. This probability increases in the instance of a collision with another truck. Nevertheless, in RTAs involving trucks and regular passenger vehicles, the other party is in higher risk of injury.
Still correlated with high mortality rates in traffic accidents traumatic aortic ruptures were frequently detected in unprotected car occupants in the early years. This biomechanical analysis investigates the different kinds of injury mechanisms leading to traumatic aortic injuries in todays traffic accidents and how the way of traffic participation affects the frequency of those injuries over the years. Based on GIDAS reported traffic accidents from 1973 to 2014 are analyzed. Results show that traumatic aortic injuries are mainly observed in high-speed accidents with high body deceleration and direct load force to the chest. Mostly chest compression is responsible for the load direction to the cardiac vessels. The main observed load vector is from caudal-ventral and from ventral solely, but also force impact from left and right side and in roll-over events with chest compression lead to traumatic aortic injuries. Classically, the injury appeares at the junction between the well-fixed aortic arch and the pars decendens following a kind of a scoop mechanism, a few cases with a hyperflexion mechanism are also described. In our analysis the deceleration effect alone never led to an aortic rupture. Comparing the past 40 years aortic injuries shift from unprotected car occupants to today's unprotected vulnerable road users like pedestrians, cyclists and motorcyclists. Still the accident characteristics are linked with chest compression force under high speed impact, no seatbelt and direct body impact.
To elucidate the risk of pedestrians, bicycle and motorbike users, data of two accident research units from 1999 to 2014 were analysed in regard to demographic data, collision details, preclinical and clinical data using SPSS. 14.295 injured vulnerable road users were included. 92 out of 3610 pedestrians ("P", 2.5%), 90 out of 8307 bicyclists ("B", 1.1%) and 115 out of 4094 motorcycle users ("M", 2.8%) were diagnosed with spinal fractures. Thoracic fractures were most frequent ahead of lumbar and cervical fractures. Car collisions were most frequent mechanism (68, 62 and 36%). MAIS was 3.8, 2.8 and 3.2 for P, B and A with ISS 32, 16 and 23. AIS-head was 2.2, 1.3 and 1.5). Vulnerable road users are at significant risk for spine fractures. These are often associated with severe additional injuries, e.g. the head and a very high overall trauma severity (polytrauma).
The purpose of this study was to analyse the actual injury situation of bicyclists regarding accidents involving more than one bicyclist. Bicyclists were included in a medical and technical analysis to create a basis for preventive measures and discovered repeating accident patterns and circumstances such as daytime, environment, helmet use rate. Technical and medical data were collected at the scene, shortly after accident. The population was compared focusing on bicycle versus bicycle accidents. Technical analysis included speed at crash, type of collision, impact angle, environment, used lane and relative velocity. Medical analysis included injury pattern and severity (AIS, ISS). Included were 578 injured bicyclists in 289 accidents from years 1999 to 2008, 61 percent were male (n=350) and 39 percent female (n=228). Sixty-seven percent ranged between 18 to 64 years of age, twelve percent each between 13 to 17 years of age and older than 65 years, eight percent between 6 to 12 years and one percent between 2 to 5 years.. Crashes took place in urban areas in 92 percent, in rural areas in 8 percent. Weather conditions were dry lanes in 97 percent and wet conditions in 3 percent. Eighty-three percent of all accidents happened during daytime, ten percent during night, and seven percent during dawn. The helmet use rate was only 7,5 percent in all involved bicyclists. The mean Maximum Abbreviated injury scale, Injury severity score was 1,31. Bicyclists are still minimally- or unprotected road users. The helmet use rate is unsatisfactorily low. The incidence of bicycle to bicycle crashes is high. Most of these accidents take place in urban areas. The level and pattern of injuries is moderate. Most of the more severe injuries occur to the head and could have been avoided by frequent helmet use.