Refine
Has Fulltext
- yes (4) (remove)
Keywords
- ConCalc (1)
- Heavy traffic (1)
- Nutzungsdauer-Prognose (1)
- Program (1)
- Programm (1)
- Querverteilung (1)
- RDO Beton 09 (1)
- Road construction (1)
- Schwerverkehrs (1)
- Service Life Prediction (1)
Ziel des Forschungsvorhabens war die Untersuchung der Querverteilung der Fahrzeuge des Schwerverkehrs im Fahrstreifen hinsichtlich ihrer Auswirkung auf die Dimensionierung und Bewer-tung der strukturellen Substanz des Straßenoberbaus. Zur Erhebung der Querverteilung wurden an 13 verschiedenen Straßenabschnitten Messungen durchgeführt. Die Abschnittsauswahl erfolgte un-ter der Annahme, dass die Querverteilung der Fahrzeuge insbesondere von der Fahrstreifenbreite abhängig ist und durch den Grad der Ausprägung vorhandener Spurrinnen beeinflusst wird. Bei Be-tonbefestigungen ist der Einfluss von Spurrinnen nicht relevant. In Vorbereitung der Messungen wurden 17 verschiedene Messsysteme analysiert und auf ihre Eignung hin untersucht. Im Ergebnis kam ein Laserscannersystem zum Einsatz, das um eine Brennstoffzelle zur Stromversorgung erwei-tert wurde. Zur Validierung der Messergebnisse diente ein mobiles Kamerasystem. Die Kombination der eingesetzten Messsysteme hat sich in der praktischen Anwendung bewährt und kann für zukünf-tige Messkampagnen empfohlen werden. In Anlehnung an Tabelle A 1.4 der RStO wurden den Messstandorten Klassifizierungen in 5 verschiedene Fahrstreifenbreiten sowie 3 verschiedene Spur-rinnentiefen zugrunde gelegt. Es ergaben sich demnach 11 Messstandorte in Asphaltbauweise so-wie 2 Messstandorte in Betonbauweise. Auf der Grundlage der analysierten Daten lässt sich der in Tabelle A 1.4 der RStO postulierte Zusammenhang zwischen Fahrstreifenbreite und Querverteilung im Fahrstreifen nicht bestätigen. Die Untersuchungen ergaben für alle Fahrstreifenbreiten von Fahr-bahnen mit Mittelmarkierung nahezu die gleichen Querverteilungen der Fahrzeuge des Schwerver-kehrs. Signifikant abweichend stellte sich lediglich die Querverteilung in Fahrstreifen von Fahrbah-nen ohne Mittelmarkierung dar. Hier wurde eine erkennbar größere Spannweite der Verteilung ge-messen. Ein Zusammenhang zwischen Spurrinnentiefe und Querverteilung des Schwerverkehrs im Fahrstreifen konnte auf Basis der vorliegenden Erkenntnisse ebenfalls nicht nachgewiesen werden. Im Ergebnis von Hypothesentests wurde festgestellt, dass die gemessenen Querverteilungen am häufigsten mit der Normal- oder der Laplace-Verteilung beschrieben werden können. Zur Berück-sichtigung der Querverteilungen im Rahmen von Dimensionierungs- und Bewertungsaufgaben für Asphalt- und Betonbefestigungen wurden zwei Ansätze verfolgt:
• Berücksichtigung der gemessenen Querverteilung (Messwerte),
• Modellierung einer gemessenen Querverteilung mittels mathematischem Ansatz und Berück-sichtigung von Modellwerten.
Die hieraus entwickelten Verfahren ermöglichen nun auch eine Berücksichtigung von Querverteilun-gen im Rahmen der rechnerischen Dimensionierung und Bewertung von Asphaltbefestigungen. Be-sonderheiten und Eigenarten der qualitativen Verläufe der für verschiedene Fahrbahnquerschnitte berechneten Ermüdungsstatus und Nutzungsdauern bzw. Ausfallwahrscheinlichkeiten lassen sich durch den charakteristischen Verlauf der jeweils verwendeten Fahrzeugquerverteilung erklären bzw. stehen in Korrelation zu dieser. Das Ziel einer Aktualisierung der Werte nach Tabelle A 1.4 der RStO ließ sich auf Grundlage der vorliegenden Ergebnisse nicht realisieren. Es zeigte sich, dass das Ver-fahren zur Berücksichtigung der Querverteilung von Fahrzeugen des Schwerverkehrs für die Ermitt-lung der Beanspruchung des Straßenoberbaus grundlegend überarbeitungswürdig ist. Referenzebe-ne sollte das spurtreue Fahren sein, wohingegen eine Querverteilung der Belastungseinwirkung mit-tels reduzierter Faktoren oder Vergleichsgrößen berücksichtigt werden sollte. Die durchgeführte Messkampagne bildete zwar ein relativ breites Spektrum der drei berücksichtigten Einflussgrößen Bauweise, Fahrstreifenbreite und Spurrinnentiefe ab, die Ergebnisse beruhen jedoch auf einer ver-gleichsweise geringen statistischen Basis. Gründe hierfür sind die zeitliche Begrenzung der Mes-sungen auf eine Woche sowie der Umstand, dass jeweils nur ein Messintervall für jede Untersu-chungskategorie durchgeführt werden konnte. Zur umfassenden Beurteilung und Quantifizierung der Einflussgröße Querverteilung der Fahrzeuge des Schwerverkehrs im Fahrstreifen auf die Dimensio-nierung und Substanzbewertung des Oberbaus sind weitere Untersuchungen notwendig, die eine größere zeitliche Spanne oder mehrere Messintervalle, Messstandorte zusätzlicher Untersuchungs-kategorien mit weiteren Einflussfaktoren sowie mehrere Messstandorte gleicher Untersuchungskate-gorien umfassen sollten. Darüber hinaus ist insbesondere das Verfahren zur Berücksichtigung der Querverteilung der Fahrzeuge des Schwerverkehrs im Fahrstreifen für die Bestimmung der dimensi-onierungsrelevanten Beanspruchung nach den RStO zu überarbeiten. Deutliche Vorteile sehen die Autoren jedoch in der Anwendung der rechnerischen Verfahren nach den RDO und RSO, bei denen die objektspezifischen Randbedingungen auch hinsichtlich der Querverteilung von Fahrzeugen im Fahrstreifen signifikant besser abgebildet werden können.
Aktuell dient bei der rechnergestützten Erneuerungs- und Instandsetzungsplanung von Bundesfernstraßen das Arbeitspapier 9, Reihe S (AP 9/S) als Hilfsmittel für die flächendeckende bzw. netzweite Substanzbewertung der gebundenen Straßenbefestigungsschichten. Das Ziel des Forschungsprojektes war es, durch die Anwendung der Entwurfsfassung der RSO Asphalt (Richtlinie für die Bewertung der strukturellen Substanz des Oberbaus von Verkehrsflächen in Asphaltbauweise) eine realitätsnähere Ermittlung des strukturellen Substanzwertes zu erreichen und dadurch die Ergebnisqualität der rechnergestützten Erhaltungsplanung netzweit und objektscharf zu erhöhen.
Um auf Grundlage des AP 9/S und der RSO Asphalt Vergleichsrechnungen für ein synthetisches Analysenetz durchführen zu können, wurden, neben einigen objektspezifischen Beprobungen, auf Grundlage aller den Autoren zugänglichen Materialuntersuchungen allgemeingültige Materialeigenschaften für Asphaltdeck-, -binder- und -tragschichten ermittelt. Die allgemeingültigen Materialeigenschaften beschreiben für jede Asphaltmaterialart ein oberes, mittleres und unteres Steifigkeitsmodul sowie für Asphalttragschichtmaterialien zusätzlich eine obere, mittlere und untere Ermüdungsfunktion.
Auf Grundlage der allgemeingültigen Materialeigenschaften wurde erstmals auf Netzebene eine auf den RSO Asphalt basierende Nutzungs bzw. Restnutzungsdauerberechnung durchgeführt. Auf Basis der systematischen Erhaltungsplanung wurde ein Grundmodell zur Berücksichtigung des Verfahrens der RSO Asphalt in einem Pavement Management System (PMS) entwickelt und implementiert. Die modifizierte Konfiguration des PMS wurde für das Analysenetz angewendet und die Ergebnisse jenen der Standardkonfiguration gegenübergestellt. Mit dem Vergleich der verschiedenen Berechnungsverfahren wurde nachgewiesen, dass die Berücksichtigung der nach den RSO Asphalt berechneten Restnutzungsdauern im PMS möglich ist.
Im Rahmen dieses Forschungsvorhabens wird das Programm ConCalc entwickelt, welches die RDO Beton 09 um simulationsbasierte Verfahren erweitert. Hierzu wird erstens die Deterministik auf die Finite-Elemente-Methode (FEM) umgestellt, damit aktuell vorhandene Einschränkungen überwunden werden können. Zweitens wird eine Probabilistik im-plementiert, um Ausfallwahrscheinlichkeiten berechnen zu können.
In erster Linie werden die Lastfälle der RDO Beton 09 mit FE präzise nachgebildet, so dass eine Alternative zur klassischen Berechnung mit analytischen Lösungen bereitgestellt wird. Eine Parameterstudie stellte u. a. heraus, dass das den RDO Beton 09 zugrundeliegende Prinzip der Superposition von Verkehrs- und Temperaturlast nicht gilt. Daher sind zur Weiterentwicklung der RDO Beton 09 weitere Untersuchungen nötig.
Die Modellierungsmöglichkeiten von ConCalc gehen weit über die der RDO Beton 09 hinaus und umfassen unter anderem:
• Die Interaktion der Betonplatte mit der Unterlage mittels
• Kontaktmechanik mit Volumenmodellen oder
• zugfreier Winklerbettung.
• Die Berücksichtigung von Dübeln und Ankern als Festkörper in Mehrplattenmodellen zur Analyse der Interaktion im Fugenbereich, sowie
• die Abbildung nichtlinearer Temperaturverläufe.
Neben den genannten Erweiterungen, bestehen mit der FEM nahezu unbegrenzte Möglichkeiten zur Weiterentwicklung.
Zur Durchführung von Berechnungen unter Anwendung der probabilistischen Verfahrensweise werden bestehende Formulierungen zu probabilistischen Bewertungsansätzen implementiert. Unter Berücksichtigung variierender Eingangsgrößen, können somit Ausfallwahrscheinlichkeiten berechnet werden.
Da das Programm vornehmlich Forschungszwecken dienen soll, müssen Erweiterungen bzw. Änderungen einfach möglich sein. Daher ist ConCalc modular gestaltet und wird in vier Haupt- und mehrere untergeordnete Module unterteilt, die sich einzeln ersetzen lassen. Die Module kommunizieren nur über menschenlesbare Dateiformate, was die Wartbarkeit und Fehlersuche vereinfacht. Soweit möglich wird auf quelloffene und etablierte Softwarelösungen zurückgegriffen, um die zukünftige Anwendbarkeit und Updates zu gewährleisten. Diese Punkte sind für unkomplizierte und zukunftsfähige Weiterentwicklungen essentiell.
Die nachfolgend beschriebenen Hauptmodule sind komplett skriptbar.
Um der Erweiterbarkeit Rechnung zu tragen wird die Benutzeroberfläche zur Konfiguration der Berechnung flexibel und anwenderfreundlich mit eingebundenen Drop-Down-Menüs und ausgewählten Eingabefeldern in Excel gestaltet.
Die grafische Oberfläche exportiert eine übersichtlich formatierte Eingabedatei für ConCalc im verbreiteten JSON-Format. Damit ist es ebenfalls möglich bei Bedarf die grafische Oberfläche zu umgehen und die Eingabedateien manuell oder geskriptet zu erstellen.
Der in Matlab geschriebene Präprozessor erstellt Eingabedateien zur Geometrie- und Netzerstellung mittels GMSH. Die von GMSH exportierten Netzdaten werden anschließend vom Präprozessor u. a. um Randbedingungen und Materialdaten ergänzt um lauffähige Eingabedateien im Abaqus-Format zu erhalten.
Der ebenfalls in Matlab geschriebene FE-Rechenkern liest die Eingabedaten, führt die Berechnung aus und schreibt Ergebnisdateien für den Postprozessor. Die implementierten Algorithmen wurden gründlich anhand analytischer und numerischer Referenzlösungen verifiziert.
Ein wesentlicher Aspekt liegt in der Reduzierung der Rechenzeit von ConCalc. Dies ist insbesondere in Hinblick auf Sensitivitätsanalysen sowie die Anbindung der probabilistischen Verfahrensweise erforderlich. Zur Beschleunigung wurde ein Verfahren zur projektionsbasierten Modellreduktion implementiert. Neben der Optimierung der Rechenzeit für die Einzelrechnung besteht außerdem die Möglichkeit, verschiedene Berechnungen, voneinander gänzlich unabhängig, zu parallelisieren. Das Maß der Parallelisierbarkeit und der Reduzierung des Rechenaufwandes ist dabei von der verfügbaren Hardware und dem Bedarf an Genauigkeit abhängig.
Die Visualisierung der Ergebnisse übernimmt ParaView, wofür Dateien im Visualization-Toolkit-Format geschrieben werden. Zur Dimensionierung und Bewertung wird die maximale Zugspannung identifiziert.
Mit ConCalc steht ein Code zur Verfügung, der alle notwendigen Voraussetzungen für die Umstellung der RDO Beton auf ein FEM-basiertes Verfahren erfüllt. Aufgrund seines modularen Aufbaus und seiner numerischen Effizienz ist ConCalc für die Weiterentwicklung der RDO Beton und für Forschungszwecke geeignet. Darüber hinaus bietet ConCalc einen Code, mit dem erstmals FEM-Berechnungen mit der probabilistischen Methode durchgeführt werden können.
Im Rahmen des Forschungsvorhabens wurden Grundlagen für ein Dimensionierungsverfahren zur Prognose der Nutzungsdauer von ungebundenen Pflasterbefestigungen geschaffen. Hierfür wurden sowohl umfangreiche Laborversuche zur Untersuchung des elastischen und plastischen Verformungsverhaltes von ungebundenen granularen Baustoffgemischen als auch umfangreiche Sensitivitätsuntersuchungen unter Anwendung der Finiten Elemente Methode sowie großmaßstäbliche Versuche an Pflasterbefestigungen durchgeführt. Die zur Berechnung von dimensionierungsrelevanten Beanspruchungszuständen erforderlichen Modellparameter wurden anhand von Ergebnissen aus Triaxialversuchen zu ermittelt. In Ergänzung zu den Triaxialversuchen wurde untersucht, ob die Beschreibung des elastischen und des plastischen Materialverhaltens mit dem zyklischen Ödometer- und dem CBR-Versuche möglich ist. Zur Kalibrierung und Bewertung des Berechnungsverfahrens wurden großmaßstäbliche Versuche im Otto-Mohr-Laboratorium der TU Dresden durchgeführt. Dafür wurden zwei Versuchsflächen mit unterschiedlichen Betonpflastersteinen hergestellt Zur Bewertung des Einflusses der versuchstechnisch untersuchten Materialien auf das Gesamtverhalten unterschiedlicher Pflasterbefestigungen wurden mittels der Finiten Elemente Software COMSOL Multiphysics umfangreiche Berechnungen durchgeführt. Neben einem nichtlinear elastischen Stoffmodell wurde außerdem eine Verfahrensweise zur Berechnung bzw. Prognose plastischer Verformungen implementiert. Es ist festzuhalten, dass die Berechnung dimensionierungsrelevanter Größen für die rechnerische Prognose der Nutzungsdauer von Pflasterbefestigungen mittels der Finiten Elemente Methode und unter Anwendung dreidimensionaler Berechnungsmodelle mit implementierten nichtlinear elastischen Stoffmodellen als praxistauglich hinsichtlich des erforderlichen Berechnungsaufwandes zu werten ist.