This study aimed to better understand nitrate transport in the soil system in a part of the state of North Rhine-Westphalia, in Germany, and to aid in the development of groundwater protection plans. An advection-diffusion (AD) cell was used in a miscible displacement experiment setup to characterize nitrate transport in 12 different soil samples from the study area. The three nitrate sorption isotherms were tested to define the exact nitrate interaction with the soil matrix. Soils varied in their properties which in its turn explain the variations in nitrate transport rates. Soil texture and organic matter content showed to have the most important effect on nitrate recovery and retardation. The miscible displacement experiment indicated a decrease in retardation by increasing sand fraction, and an increase in retardation by increasing soil organic matter content. Soil samples with high sand fractions (up to 94 %) exhibited low nitrate sorption capacity of less than 10 %, while soils with high organic matter content showed higher sorption of about 30 %. Based on parameterization for nitrate transport equation, the pore water velocity for both sandy and loamy soils were significantly different (P < 0.001). Pore water velocity in sandy soil (about 4 x 10 high 3 m/s) was about 100 to 1000 larger than in loamy soils (8.7 x 10 high 5 m/s). On the other hand, the reduction in nitrate transport in soils associated with high organic matter was due to fine pore pathways clogged by fine organic colloids. It is expected that the existing micro-phobicity increased the nitrate recovery from 9 to 32 % resulting in maximum diffusion rates of about 3.5 x 10 high 5 m/s2 in sandy soils (sample number CS-04) and about 1.4 x 10 high 7 m/s2 in silt loam soils (sample number FS-02).
Non-point sources of traffic-related pollution become a major concern as they " compared to the point-source inputs " are more difficult to be defined or controlled. It is crucial to evaluate the fraction of traffic-related contamination that is transported to the road surroundings as it could negatively impact soil, surface water and groundwater. This study describes two means through which pollutants leave the road to the surrounding environment. Three German motorways were selected (A4, A555, and A61), where runoff and deposits were analyzed to determine pollutant load moving into the roadside soil or into the drainage system. Each of the three motorways carries approximately 70,000 vehicles a day on 4 to 6 driving lanes; and they cover a broad range of truck participation in the total traffic load ranging from 5.4% to 19.8%. The three motorways represent several topographical and landscape features as forest with noise barrier and parallel as well as perpendicular orientation to the main wind direction. Sampling of runoff and deposition was done on monthly basis. Bulk deposition was collected in Bergerhoff vessels at two heights (1.5 m and 0.3 m above the ground) and in 1 m, 2.5 m, 5 m and 10 m distances from the road edge. The results showed that heavy metals as well as large amounts of mineral compounds are moving from the driving lanes into the roadside environment. This includes sodium from applying deicing salts in winter seasons, which could be found in soil, dust and water samples. Calcium and iron were also detected in almost comparable concentrations. The annual deposition flow (bulk deposition) measured at a height of 1.5 m was higher than the comparative values for urban areas and background measuring points. The spatial distribution of material deposition showed clear differences between the three motorways. The pollutant load in deposition measured near the ground surface was higher than those measured at 1.5 m above the land surface. At all three sites, a clear negative correlation between pollutant load and the distance from the roadside could be found. Nearly 90% of the concentration values of heavy metals in road runoff were below or in the range of the test values for seepage water in the German Soil Protection and Contamination Ordinance. The pH-values around 7 in runoff and adjacent soil provide a good retention capacity in the soil for the heavy metal input.