Refine
Year of publication
Document Type
- Conference Proceeding (20)
- Working Paper (4)
- Article (2)
Keywords
- Fußgänger (11)
- Pedestrian (11)
- Bewertung (9)
- Evaluation (assessment) (9)
- Fahrzeug (9)
- Safety (9)
- Sicherheit (9)
- Vehicle (9)
- Injury (8)
- Verletzung (8)
Institute
Thorax injury is one of main causes of serious injury in frontal collisions, especially for elderly car occupants. The anthropometric test device (ATD) THOR‐M provides chest deflection measurements at multiple locations, to assess the risk of thorax injury. For this purpose e, risk functions are needed that relate the potential criteria based on multipoint chest deflection measurement to in jury risk. Different thorax injury criteria and risk functions for THOR have been proposed [2‐3]. The criteria and functions are based on the traditional approach to developing injury risk functions using matched ATD and PMHS tests by relating the injury (number of fractures) to injury criteria. Regarding these studies, some limitations have been identified, in particular concerning the loading conditions of the data used (mainly 3‐point‐belt loading, high loading severity, out‐of‐date ATD versions. To extend the data set and overcome these limitations, a new approach for improved thorax injury criteria was applied within the EC‐funded project SENIORS. The new approach is based on matched frontal impact sled computer simulations with a model representing the latest THOR‐M ATD version, and matching simulations with a human body model (HBM) representing an elderly car occupant.
Euro NCAP will start to test pedestrian Automatic Emergency Braking Systems (AEB) from 2016 on. Test procedures for these tests had been developed by and discussed between the AsPeCSS project and other initiatives (e.g. the AEB group with Thatcham Research from the UK). This paper gives an overview on the development process from the AsPeCSS side, summarizes the current test and assessment procedures as of March 2015 and shows test and assessment results of five cars that had been tested by BASt for AsPeCSS and the respective manufacturer. The test and assessment methodology seems appropriate to rate the performance of different vehicles. The best test result - still one year ahead of the test implementation - is around 80%, while the worst rating result is around 10%. Other vehicles are between these boundaries.
Autonomous Emergency Braking (AEB) systems for pedestrians have been predicted to offer substantial benefit. On this basis, consumer rating programmes, e.g. Euro NCAP, are developing rating schemes to encourage fitment of these systems. One of the questions that needs to be answered to do this fully, is to determine how the assessment of the speed reduction offered by the AEB is integrated with the current assessment of the passive safety for mitigation of pedestrian injury. Ideally, this should be done on a benefit related basis. The objective of this research was to develop a benefit based methodology for assessment of integrated pedestrian protection systems with pre-crash braking and passive safety components. A methodology has been developed which calculates the cost of pedestrian injury expected, assuming all pedestrians in the target population (i.e. pedestrians impacted by the front of a passenger car) are impacted by the car being assessed, taking into account the impact speed reduction offered by the car’s AEB (if fitted) and the passive safety protection offered by the car’s frontal structure. For rating purposes, this cost can be normalised by comparing it to the cost calculated for selected cars. The methodology uses the speed reductions measured in AEB tests to determine the speed at which each casualty in the target population will be impacted. The injury to each casualty is then calculated using the results from standard Euro NCAP pedestrian impactor tests and injury risk curves. This injury is converted into cost using ‘Harm’ type costs for the body regions tested. These costs are weighted and summed. Weighting factors were determined using accident data from Germany and GB and the results of a benefit analysis performed by the EU FP7 AsPeCSS project. This resulted in German and GB versions of the methodology. The methodology was used to assess cars with good, average and poor Euro NCAP pedestrian ratings, with and without a current AEB system fitted. It was found that the decrease in casualty injury cost achieved by fitting an AEB system was approximately equivalent to that achieved by increasing the passive safety rating from poor to average. Also, it was found that the assessment was influenced strongly by the level of head protection offered in the scuttle and windscreen area because this is where head impact occurs for a large proportion of casualties. The major limitation within the methodology is the assumption used implicitly during weighting. This is that the cost of casualty injuries to body areas, such as the thorax, not assessed by the headform and legform impactors, and other casualty injuries such as those caused by ground impact, are related linearly to the cost of casualty injuries assessed by the impactors. A methodology for assessment of integrated pedestrian protection systems was developed. This methodology is of interest to consumer rating programmes which wish to include assessment of these systems. It also raises the interesting issue if the head impact test area should be weighted to reflect better real-world benefit.
The EVERSAFE project addressed many safety issues for electric vehicles including the crash and post-crash safety. The project reviewed the market shares of full electric and hybrid vehicles, latest road traffic accident data involving severely damaged electric vehicles in Europe, and identified critical scenarios that may be particular for electric vehicles. Also, recent results from international research on the safety of electric vehicles were included in this paper such as results from performed experimental abuse cell and vehicle crash tests (incl. non-standardized tests with the Mitsubishi i-MiEV and the BMW i3), from discussions in the UN IG REESS and the GTR EVS as well as guidelines (handling procedures) for fire brigades from Germany, Sweden and the United States of America. Potential hazards that might arise from damaged electric vehicles after severe traffic accidents are an emerging issue for modern vehicles and were summarized from the perspective of different national approaches and discussed from the practical view of fire fighters. Recent rescue guidelines were reviewed and used as the basis for a newly developed rescue procedure. The paper gives recommendations in particular towards fire fighters, but also to vehicle manufacturers and first-aiders.
Since the beginning of the testing activities related to passive pedestrian safety, the width of the test area being assessed regarding its protection level for the lower extremities of vulnerable road users has been determined by geometrical measurements at the outer contour of the vehicle. During the past years, the trend of a decreased width of the lower extremity test and assessment area realized by special features of the outer vehicle frontend design could be observed. This study discusses different possibilities for counteracting this development and thus finding a robust definition for this area including all structures with high injury risk for the lower extremities of vulnerable road users in the event of a collision with a motor vehicle. While Euro NCAP is addressing the described problem by defining a test area under consideration of the stiff structures underneath the bumper fascia, a detailed study was carried out on behalf of the European Commission, aiming at a robust, worldwide harmonized definition of the bumper test area for legislation, taking into account the specific requirements of different certification procedures of the contracting parties of the UN/ECE agreements from 1958 and 1998. This paper details the work undertaken by BASt, also serving as a contribution to the TF-BTA of the UN/ECE GRSP, towards a harmonized test area in order to better protect the lower extremities of vulnerable road users. The German In-Depth Accident Database GIDAS is studied with respect to the potential benefit of a revised test area. Several practical options are discussed and applied to actual vehicles, investigating the differences and possible effects. Tests are carried out and the results studied in detail. Finally, a proposal for a feasible definition is given and a suggestion is made for solving possible open issues at angled surfaces due to rotation of the impactor. The study shows that, in principle, there is a need for the entire vehicle width being assessed with regard to the protection potential for lower extremities of vulnerable road users. It gives evidence on the necessity for a robust definition of the lower extremity test area including stiff and thus injurious structures at the vehicle frontend, especially underneath the bumper fascia. The legal definition of the lower extremity test area will shortly be almost harmonized with the robust Euro NCAP requirements, as already endorsed by GRSP, taking into account injurious structures and thus contributing to the enhanced protection of vulnerable road users. After finalization of the development of a torso mass for the flexible pedestrian legform impactor (FlexPLI) it is recommended to consider again the additional benefit of assessing the entire vehicle width.
The Intersection 2020 project was initiated to develop a test procedure for Automatic Emergency Braking systems in intersection car-to-car scenarios to be transferred to Euro NCAP. The project aims to address current road traffic accidents on European roads and therefore sets a priority of the identification of the most important car-to-car accidents and Use Cases. Taking into account technological and practical limitations, Test Scenarios are derived from the Use Cases in a later stage of the project. This paper presents parts of a larger study and provides an overview of common car-to-vehicle(at least four wheels) collision types at junctions in Europe and specifies seven Accident Scenarios from which the three scenarios “Straight Crossing Paths (SCP)”, “Left Turn Across Path – Opposite Direction Conflict (LTAP/OD)” and “Left Turn Across Path – Lateral Direction (LTAP/LD)” are most important due to their high relevance regarding severe car-to-car accidents. Technical details about crash parameters such as collision and initial speeds are delivered. The analysis work performed is input for the definition and selection of the Use Cases as well as for the project’s benefit estimation. The numbers of accidents and fatalities in accidents at intersections involving a passenger car were shown per intersection type. In both statistics, it was found that accidents at crossroads and T- or staggered junctions are of highest relevance, followed by roundabouts. Focusing on accidents at intersections between one passenger car and another road user shows that around one-third of all accidents and related fatalities could have been assigned to car-to-PTW accidents and one-fifth of all accidents and fatalities to car-to-car accidents. Regarding car-to-car accidents with at least serious injury outcome 38% out of 34,489 car-to-car accidents happened at intersections. These figures correspond to 18% of the fatalities (4,236 fatalities in total). Considering all intersection types, around half of all related accidents happened in urban environments whereas this number decreased to one-third of all fatalities. Further, the proportion of road fatalities per country occurring at intersections varies widely across the EU. Also, there are proportionately more fatalities in daylight or twilight conditions at junctions. Use Cases are supposed to be derived from Accident Scenarios and by adding detailed information for example about the road layout, right-of-way and the vehicle trajectories prior to the collision. Instead of applying cluster algorithms to the accident data, a pragmatic approach was finally preferred to create them. Note: Use Cases serve as an intermediate step between the Accident Scenarios and the Test Scenarios which describe the actual testing conditions. Finally, 74 Use Cases were identified. This large number indicates the complexity of intersection crashes due to the combination of several parameters.
Test and assessment procedures for passive pedestrian protection of passenger cars are in place for many years within world-wide regulations as well as consumer test programmes. Nevertheless, recent accident investigations show a stagnation of pedestrian fatality numbers on European roads alongside increasing injury severities for older road users. The EU-funded SENIORS (Safety ENhancing Innovations for Older Road userS) project developed and evaluated a thorax injury prediction tool (TIPT) for later incorporation within test and assessment procedures. Accident data indicates an increasing portion of AIS2 and AIS3+ thoracic injuries of older pedestrians and cyclists which are currently not assessed in any test procedure for vulnerable road users. Therefore, SENIORS focused on the development of a test tool predicting the risk of rib fractures of vulnerable road users (VRU). While injury risk functions were reanalyzed, human body model (HBM) simulations against categorized generic vehicle frontends served as input for the definition of test setups and corresponding impact parameters. TIPT component tests against a generic frontend and an actual vehicle were used for the evaluation of the technical feasibility. The TIPT component tests shows the general feasibility of a test procedure for the assessment of thoracic injuries, with good repeatability and reproducibility of kinematics and results. Impact parameters such as the inclination angles of the thorax, angles of the velocity vector and impact speeds well replicate the parameters gained from the HBM simulations. The proposed markup and assessment scheme offers the possibility of a homogeneous evaluation of the protection potential of vehicle frontends while maintaining justifiable testing efforts. During evaluation testing, the proposed requirements were entirely met. The developed prototype of TIPT and launching system offer impact angles and speeds as suggested by HBM simulations. However, since thorax impacts during pedestrian accidents do not occur perpendicularly to the vehicle surface in most cases, the TIPT built-in linear potentiometers do not acquire the true resultant intrusions on the ribcage and thus, TIPT rib deflections do not reflect the actual human injury risk. However; for the impact forward to the bonnet leading edge, the TIPT seems applicable without further modifications. The test and assessment procedures using the TIPT offer for the first time the possibility of replicating the kinematics of a pedestrian thorax with a component test. The developed assessment scheme gives a first indication on how the risk for thoracic injuries could be implemented within the Euro NCAP Box 3 assessment. Future development of the TIPT may focus on implementing a rib cage that can deflect in all axes in a humanlike way.
Airbags are, together with the three-point belt, the most effective passive safety equipment of vehicles. However, literature shows that sound pressure levels of up to 170 dB can occur during airbag deployment. A literature review revealed no systematic experimental data on possible hearing loss by airbag deployment, that also takes any other crash accompanied noise into account, such as deformation and impact noise. Also the rising number of airbags per vehicle resulting in a higher number of deployed airbags in an accident was not addressed with respect to hearing loss. Thus, an extensive test matrix of noise measurements during airbag deployments was conducted including onboard measuring during crashes and static measurements. Dynamic and static experiments with single and multiple airbag deployments were conducted. The results of this study show, that in the analyzed crash constellations the acoustic emission of the collision as well as the car deformation can trigger the stapedius reflex before the airbag deployment. The stapedius reflex protects the inner ear at least partially in case of dangerous sound levels. However, it seems that multiple airbag deployments in a short sequence pose a considerable risk for hearing impairments despite the fully contracted stapedius muscle. Further and in line with Price et al. (2013) it was found that the risk of hearing loss is lower with closed windows. The analysis of patient and accident data showed no link between airbag deployment and hearing loss. This might be caused by low case numbers of reported hearing loss problems up to now. In conclusion the results show that a singular analysis of the sound pressure of airbag deployments without crash accompanied noises is not sufficient as the protective effect of the stapedius reflex is neglected. Still, successive airbag deployments in a short timeframe raise the risk of hearing loss. Further investigation on hearing impairment due to airbag deployment and triggering of the stapedius reflex is needed and the data acquisition of accidents and patients should consider hearing loss aspects.
To assess occupant safety in a crash test, criteria associating the measurements made with a crash test dummy to injury risk are necessary. To enable better protection of elderly car occupants the objective of this study was to develop improved thoracic injury criteria for the THOR average male dummy. The development of these criteria is usually based on matched dummy and Post Mortem Human Surrogate (PMHS) tests by relating the obtained PMHS injuries to dummy measurements. This approach is limited, since only a few tests in relevant loading conditions are available and any new test series requires high efforts to be performed due to their complexity and costs. To overcome these limitations and to extend the dataset for the development of THOR dummy chest injury risk functions a simulation-based approach was applied within the EC funded project SENIORS (Safety Enhanced Innovations For older Road Users - www.seniors-project.eu). Within this study frontal impact sled simulations with an FE model representing a THOR average male dummy and matched simulations with a human body model (HBM) representing an elderly car occupant were carried out. The HBM used for this study was the THUMS TUC with modified rib cage, which was developed in SENIORS. The modifications included material and geometry changes aiming to represent an elderly car occupant. The rib fracture risk was predicted with a deterministic approach whereby a rib was considered broken when the strain exceeded an age-dependent threshold. Furthermore, a probabilistic method was applied to predict the probability of sustaining a certain number of fractured ribs by comparing local strain values to the distribution of cortical rib ultimate strain. By relating the output from the HBM simulations to a multi-point dummy injury criterion, injury risk curves were calculated by statistical methods. The wide range of loading conditions resulted in the desired range of injuries and THOR ATD output. The number of fractured ribs predicted by the HBM based on the deterministic prediction method was between 0 and 15. Furthermore, the probabilistic risk for the number of rib fractures equal or greater than two, three or four was calculated for each load case. The THOR rib deflection criterion Rmax was between 18 and 56 mm, while the PC Score was in the range of 2.5 to 7.2. Based on these outputs new risk curves for the predicted deterministic (AIS2+/3+) and probabilistic injury risk were calculated. The new curves show reasonable shapes and significance that provide trust in their application. The new risk curves are compared to risk curves obtained by traditional methods. The results were found similar to previous injury risk functions based on physical tests, which gives a high level of confidence in the chosen approach. The simulation-based approach of matched ATD model vs. HBM simulation was successfully applied. Rmax curves show a slightly better quality than the injury criterion PC Score.
In line with the new definition introduced by the European Commission (EC), the number of seriously injured road casualties in Germany for 2014 is assessed in this study. The number of MAIS3+ casualties is estimated by two different methodological approaches. The first approach is based on data from the German Inâ€Depth Accident Study (GIDAS), which is closely related to the German Road Traffic Accident Statistics. The second approach is based on data from the German TraumaRegister DGU-® (TRâ€DGU), which includes many more hospitals but not all MAIS3+ injuries.
Europe has benefited from a decreasing number of road traffic fatalities. However, the proportion of older road users increases steadily. In an ageing society, the SENIORS project aims to improve the safe mobility of older road users by determining appropriate requirements towards passive vehicle safety systems. Therefore, the characteristics of road traffic crashes involving the elderly people need to be understood. This paper focuses on car occupants and pedestrians or cyclists in crashes with modern passenger cars. Ten crash databases and four hospital statistics from Europe have been analysed to answer the questions on which body regions are most frequently and severely injured in the elderly, and specific injuries sustained by always comparing older (65 years and above) with midâ€aged road users (25â€64 years). It was found that the body region thorax is of particularly high importance for the older car occupant with injury severities of AIS2 or AIS3+, where as the lower extremities, head and the thorax need to be considered for older pedestrians and cyclists. Further, injury risk functions were provided. The hospital data analysis showed less difference between the age groups. The linkage between crash and hospital data could only be made on a general level as their inclusion criteria were quite different.
Schutz von schwächeren Verkehrsteilnehmern: kommende Anforderungen aus Gesetzgebung und Euro NCAP
(2017)
Systeme der aktiven Fahrzeugsicherheit, insbesondere Notbremsassistenzsysteme und automatische Notbremssysteme, haben in den letzten zwei Dekaden große technische Fortschritte gemacht, und das im Wesentlichen ohne "Druck" von Gesetzgeber oder unabhängigen Testorganisationen " diese können aber durch passende Anforderungen den Vormarsch der Systeme in die Breite und die Ausnutzung von ansonsten für den Hersteller vielleicht nicht wirtschaftlichen Potentialen unterstützen. Dieser Bericht hat das Ziel, einen Überblick über die kommenden Anforderungen an Schutzsysteme für schwächere Verkehrsteilnehmer zu geben und diese Anforderungen in den Kontext Euro NCAP (=welchen Einfluss haben diese Anforderungen auf die Gesamtbewertung?) sowie Gesetzgebung (schwächere Anforderungen, aber dafür ein Markteintrittskriterium) zu stellen: - Anforderungen und Testprozeduren für Notbremsassistenz Fahrradunfälle 2018 und 2020 in Euro NCAP; - Anforderungen und Testprozeduren für Notbremsassistenz bei Nachtunfällen mit Fußgängern in Euro NCAP 2018; - Anforderungen und Testprozeduren für Abbiegeassistenzsysteme zum Schutz von Radfahrern in Unfallsituationen mit rechtsabbiegenden Lkw innerhalb der Fahrzeugtypgenehmigung.
The presence and performance of Advanced Driver Assistance Systems (ADAS) has increased over last years. Systems available on the market address also conflicts with vulnerable road users (VRUs) such as pedestrians and cyclists. Within the European project PROSPECT (Horizon2020, funded by the EC) improved VRU ADAS systems are developed and tested. However, before determining systems" properties and starting testing, an up-to-date analysis of VRU crashes was needed in order to derive the most important Use Cases (detailed crash descriptions) the systems should address. Besides the identified Accident Scenarios (basic crash descriptions), this paper describes in short the method of deriving the Use Cases for car-to-cyclist crashes. Method Crashes involving one passenger car and one cyclist were investigated in several European crash databases looking for all injury severity levels (slight, severe and fatal). These data sources included European statistics from CARE, data on national level from Germany, Sweden and Hungary as well as detailed accident information from these three countries using GIDAS, the Volvo Cars Cyclist Accident database and Hungarian in-depth accident data, respectively. The most frequent accident scenarios were studied and Use Cases were derived considering the key aspects of these crash situations (e.g., view orientation of the cyclist and the car driver- manoeuvre intention) and thus, form an appropriate basis for the development of Test Scenarios. Results Latest information on car-to-cyclist crashes in Europe was compiled including details on the related crash configurations, driving directions, outcome in terms of injury severity, accident location, other environmental aspects and driver responsibilities. The majority of car-to-cyclist crashes occurred during daylight and in clear weather conditions. Car-to-cyclist crashes in which the vehicle was traveling straight and the cyclist is moving in line with the traffic were found to result in the greatest number of fatalities. Considering also slightly and seriously injured cyclists led to a different order of crash patterns according to the three considered European countries. Finally the paper introduced the Use Cases derived from the crash data analysis. A total of 29 Use Cases were derived considering the group of seriously or fatally injured cyclists and 35 Use Cases were derived considering the group of slightly, seriously or fatally injured cyclists. The highest ranked Use Case describes the collision between a car turning to the nearside and a cyclist riding on a bicycle lane against the usual driving direction. A unified European dataset on car-to-cyclist crash scenarios is not available as the data available in CARE is limited, hence national datasets had to be used for the study and further work will be required to extrapolate the results to a European level. Due to the large number of Use Cases, the paper shows only highest ranked ones.
A reduction of around 48% of all road fatalities was achieved in Europe in the past years including a reduced number of fatalities with an older age. However, among all road fatalities, the proportion of elderly is steadily increasing. In an ageing society, the European (Horizon2020) project SENIORS aims to improve the safe mobility of older road users, who have different transportation habits compared to other age groups. To increase their level of safe mobility by determining appropriate requirements for vehicle safety systems, the characteristics of current road traffic collisions involving the elderly and the injuries that they sustain need to be understood in detail. Hereby, the paper focuses on their traffic participation as pedestrian, cyclist or passenger car occupant. Following a literature review, several national and international crash databases and hospital statistics have been analysed to determine the body regions most frequently and severely injured, specific injuries sustained and types of crashes involved, always comparing older road users (65 years and more) with mid-aged road users (25-64 years). The most important crash scenarios were highlighted. The data sources included European statistics from CARE, data on national level from Germany, Sweden, Italy, United Kingdom and Spain as well as in-depth crash information from GIDAS (Germany), RAIDS (UK), CIREN and NASS-CDS (US). In addition, familiar hospital data from Germany (TraumaRegister DGU-®), Italy (Italian Register of Acute Traumas) and UK hospital statistics (TARN) were included in the study to gain further insight into specific injury patterns. Comprehensive data analyses were performed showing injury patterns of older road users in crashes. When comparing with mid-aged road users, all databases showed that the thorax body region is of particularly high importance for the older car occupant with injury severities of AIS 2 or AIS 3+, whereas the body regions lower extremities, head and thorax need to be considered for the older pedestrians and cyclists. Besides these comparisons, the most frequent and severe top 5 injuries were highlighted per road user group. Further, the most important crash configurations were identified and injury risk functions are provided per age group and road user group. Although several databases have been analysed, the picture on the road safety situation of older road users in Europe was not complete, as only Western European data was available. The linkage between crash data and hospital data could only be made on a general level as their inclusion criteria were quite different.
Test and assessment procedures for passive pedestrian protection based on developments by the European Enhanced Vehicle-safety Committee (EEVC) have been introduced in world-wide regulations and consumer test programmes, with considerable harmonization between these programmes. Nevertheless, latest accident investigations reveal a stagnation of pedestrian fatality numbers on European roads running the risk of not meeting the European Union- goal of halving the number of road fatalities by the year 2020. The branch of external road user safety within the EC-funded research project SENIORS under the HORIZON 2020 framework programme focuses on investigating the benefit of modifications to pedestrian test and assessment procedures and their impactors for vulnerable road users with focus on the elderly. Injury patterns of pedestrians and cyclists derived from the German In-Depth Accident Study (GIDAS) show a trend of AIS 2+ and AIS 3+ injuries getting more relevant for the thorax region in crashes with newer cars (Wisch et al., 2017), while maintaining the relevance for head and lower extremities. Several crash databases from Europe such as GIDAS and the Swedish Traffic Accident Data Acquisition (STRADA) also show that head, thorax and lower extremities are the key affected body regions not only for the average population but in particular for the elderly. Therefore, the SENIORS project is focusing on an improvement of currently available impactors and procedures in terms of biofidelity and injury assessment ability towards a better protection of the affected body regions, incorporating previous results from FP 6 project APROSYS and subsequent studies carried out by BASt. The paper describes the overall methodology to develop revised FE impactor models. Matched human body model and impactor simulations against generic test rigs provide transfer functions that will be used for the derivation of impactor criteria from human injury risk functions for the affected body regions. In a later step, the refined impactors will be validated by simulations against actual vehicle front-ends. Prototyping and adaptation of test and assessment procedures as well as an impact assessment will conclude the work of the project at the final stage. The work will contribute to an improved protection of vulnerable road users focusing on the elderly. The use of advanced human body models to develop applicable assessment criteria for the revised impactors is intended to cope with the paucity of actual biomechanical data focusing on elderly pedestrians. In order to achieve optimized results in the future, the improved test methods need to be implemented within an integrated approach, combining active with passive safety measures. In order to address the developments in road accidents and injury patterns of vulnerable road users, established test and assessment procedures need to be continuously verified and, where needed, to be revised. The demographic change as well as changes in the vehicle fleet, leading to a variation of accident scenarios, injury frequencies and injury patterns of vulnerable road users are addressed by the work provided by the SENIORS project, introducing updated impactors for pedestrian test and assessment procedures.
In general the passive safety capability is much greater in newer versus older cars due to the stiff compartment preventing intrusion in severe collisions. However, the stiffer structure which increases the deceleration can lead to a change in injury patterns. In order to analyse possible injury mechanisms for thoracic and lumbar spine injuries, data from the German Inâ€Depth Accident Study (GIDAS) were used in this study. A twoâ€step approach of statistical and caseâ€byâ€case analysis was applied for this investigation. In total 4,289 collisions were selected involving 8,844 vehicles, 5,765 injured persons and 9,468 coded injuries. Thoracic and lumbar spine injuries such as burst, compression or dislocation fractures as well as soft tissue injuries were found to occur in frontal impacts even without intrusion to the passenger compartment. If a MAIS 2+ injury occurred, in 15% of the cases a thoracic and/or lumbar spine injury is included. Considering AIS 2+ thoracic and lumbar spine, most injuries were fractures and occurred in the lumbar spine area. From the case by case analyses it can be concluded that lumbar spine fractures occur in accidents without the engagement of longitudinals, lateral loading to the occupant and/or very severe accidents with MAIS being much higher than the spine AIS.
It is commonly agreed that active safety will have a significant impact on reducing accident figures for pedestrians and probably also bicyclists. However, chances and limitations for active safety systems have only been derived based on accident data and the current state of the art, based on proprietary simulation models. The objective of this article is to investigate these chances and limitations by developing an open simulation model. This article introduces a simulation model, incorporating accident kinematics, driving dynamics, driver reaction times, pedestrian dynamics, performance parameters of different autonomous emergency braking (AEB) generations, as well as legal and logical limitations. The level of detail for available pedestrian accident data is limited. Relevant variables, especially timing of the pedestrian appearance and the pedestrian's moving speed, are estimated using assumptions. The model in this article uses the fact that a pedestrian and a vehicle in an accident must have been in the same spot at the same time and defines the impact position as a relevant accident parameter, which is usually available from accident data. The calculations done within the model identify the possible timing available for braking by an AEB system as well as the possible speed reduction for different accident scenarios as well as for different system configurations. The simulation model identifies the lateral impact position of the pedestrian as a significant parameter for system performance, and the system layout is designed to brake when the accident becomes unavoidable by the vehicle driver. Scenarios with a pedestrian running from behind an obstruction are the most demanding scenarios and will very likely never be avoidable for all vehicle speeds due to physical limits. Scenarios with an unobstructed person walking will very likely be treatable for a wide speed range for next generation AEB systems.
Within this paper different European accident data sources were used to investigate the causations and backgrounds of road traffic accidents with pedestrians. Analyses of high level national data and in-depth accident data from Germany and Great Britain was used to confirm and refine preliminary accident scenarios identified from other sources using a literature review. General observations made included that a high proportion of killed or seriously injured pedestrian casualties impacted by cars were in "dark" light conditions. Seven accident scenarios were identified (each divided into "daylight" and "dark" light conditions) which included the majority of the car front-to-pedestrian crash configurations. Test scenarios were developed using the identified accident scenarios and relevant parameters. Hypothetical parameters were derived to describe the performance of pedestrian pre-crash systems based on the assumption that these systems are designed to avoid false positives as a very high priority, i.e. at virtually all costs. As result, three "Base Test Scenarios" were selected to be developed in detail in the AsPeCSS project. However, further Enhanced Test Scenarios may be needed to address environmental factors such as darkness if it is determined that system performance is sensitive to these factors. Finally, weighting factors for the accident scenarios for Europe (EU-27) were developed by averaging and extrapolation of the available data. This paper represents interim results of Work Package 1 within the AsPeCSS project.
The ASSESS project is a collaborative project that develops test procedures for pre-crash safety systems like Automatic Emergency Braking (AEB). One key criterion for the effectiveness of e.g. AEB is reduction in collision speed compared to baseline scenarios without AEB. The speed reduction for a given system can only be determined in real world tests that will end with a collision. Soft targets that are crashable up to velocities of 80 km/h are state of the art for these assessments, but ordinary balloon cars are usually stationary targets. The ASSESS project goes one step further and defines scenarios with moving targets. These scenarios define vehicle speeds of up to 100 km/h, different collision scenarios and relative collision speeds of up to 80km/h. This paper describes the development of a propulsion system for a soft target that aims to be used with these demanding scenario specifications. The Federal Highway Research Institute- (BASt-) approach to move the target is a self-driving small cart. The cart is controlled either by a driver (open-loop control via remote-control) or by a computer (closed-loop control). Its weight is limited to achieve a good crashability without damages to the test vehicle. To the extent of our knowledge BASt- approach is unique in this field (other carts cannot move at such high velocities or are not crashable). This paper describes in detail the challenges and solutions that were found both for the mechanical construction and the implementation of the control and safety system. One example for the mechanical challenges is e.g. the position of the vehicle- center of gravity (CG). An optimum compromise had to be found between a low CG oriented to the front of the vehicle (good for driveability) and a high CG oriented to the rear of the vehicle (good for crashability). The soft target itself which is also developed within the ASSESS project will not be covered in detail as this is work of a project partner. Publications on this will follow. The paper also shows first test results, describes current limitations and gives an outlook. It is expected that the presented test tools for AEB and other pre-crash safety systems is introduced in the future into consumer testing (NCAP) as well as regulatory testing.
It is well known that most accidents with pedestrians are caused by the driver not being alert or misinterpreting the situation. For that reason advanced forward looking safety systems have a high potential to improve safety for this group of vulnerable road users. Active pedestrian protection systems combine reduction of impact speed by driver warning and/or autonomous braking with deployment of protective devices shortly before the imminent impact. According to the Euro NCAP roadmap the Autonomous Emergency Braking system tests for Pedestrians Protection will be set in force from 2016 onwards. Various projects and organisations in Europe are developing performance tests and assessment procedures as accompanying measures to the Euro NCAP initiative. To provide synthesised input to Euro NCAP so-called Harmonisation Platforms (HP-) have been established. Their main goal is to foster exchange of information on key subjects, thereby generating a clear overview of similarities and differences on the approaches chosen and, on that basis, recommend on future test procedures. In this paper activities of the Harmonisation Platform 2 on the development of Test Equipment are presented. For the testing targets that mimic humans different sensing technologies are required. A first set of specifications for pedestrian targets and the propulsion systems as collected by Harmonisation Platform 2 are presented together with a first evaluation for a number of available tools.
For the assessment of vehicle safety in frontal collisions compatibility (which consists of self and partner protection) between opponents is crucial. Although compatibility has been analysed worldwide for over 10 years, no final assessment approach has been defined to date. Taking into account the European Enhanced Vehicle safety Committee (EEVC) compatibility and the final report to the steering committee on frontal impact [Faerber 2007] and the FP5 VC-COMPAT[Edwards 2007] project activities, two test approaches were identified as the most promising candidates for the assessment of compatibility. Both are composed of an off-set and a full overlap test procedure. In addition another procedure (a test with a moving deformable barrier) is getting more attention in current research programmes. The overall objective of the FIMCAR project is to complete the development of the candidate test procedures and propose a set of test procedures suitable for regulatory application to assess and control a vehicle- frontal impact and compatibility crash safety. In addition an associated cost benefit analysis will be performed. In the FIMCAR Deliverable D 3.1 [Adolph 2013] the development and assessment of criteria and associated performance limits for the full width test procedure were reported. In this Deliverable D3.2 analyses of the test data (full width tests, car-to-car tests and component tests), further development and validation of the full width assessment protocol and development of the load cell and load cell wall specification are reported. The FIMCAR full-width assessment procedure consists of a 50 km/h test against the Full Width Deformable Barrier (FWDB). The Load Cell Wall behind the deformable element assesses whether or not important Energy Absorbing Structures are within the Common Interaction Zone as defined based on the US part 581 zone. The metric evaluates the row forces and requires that the forces directly above and below the centre line of the Common Interaction Zone exceed a minimum threshold. Analysis of the load spreading showed that metrics that rely on sum forces of rows and columns are within acceptable tolerances. Furthermore it was concluded that the Repeatability and Reproducibility of the FWDB test is acceptable. The FWDB test was shown to be capable to detect lower load paths that are beneficial in car-to-car impacts.
For the assessment of vehicle safety in frontal collisions compatibility (which consists of self and partner protection) between opponents is crucial. Although compatibility has been analysed worldwide for over 10 years, no final assessment approach has been defined to date. Taking into account the European Enhanced Vehicle safety Committee (EEVC) compatibility and frontal impact working group (WG15) and the FP5 VC-COMPAT project activities, two test approaches have been identified as the most promising candidates for the assessment of compatibility. Both are composed of an off-set and a full overlap test procedure. In addition another procedure (a test with a moving deformable barrier) is getting more attention in current research programmes. The overall objective of the FIMCAR project is to complete the development of the candidate test procedures and propose a set of test procedures suitable for regulatory application to assess and control a vehicle- frontal impact and compatibility crash safety. In addition an associated cost benefit analysis should be performed. The objectives of the work reported in this deliverable were to review existing full-width test procedures and their discussed compatibility metrics, to report recent activities and findings with respect to full-width assessment procedures and to assess test procedures and metrics. Starting with a review of previous work, candidate metrics and associated performance limits to assess a vehicle- structural interaction potential, in particular its structural alignment, have been developed for both the Full Width Deformable Barrier (FWDB) and Full Width Rigid Barrier (FWRB) tests. Initial work was performed to develop a concept to assess a vehicle- frontal force matching. However, based on the accident analyses performed within FIMCAR frontal force matching was not evaluated as a first priority and thus in line with FIMCAR strategy the focus was put on the development of metrics for the assessment of structural interaction which was evaluated as a first priority.
Cost benefit analysis
(2014)
Although the number of road accident casualties in Europe is falling the problem still remains substantial. In 2011 there were still over 30,000 road accident fatalities [EC 2012]. Approximately half of these were car occupants and about 60 percent of these occurred in frontal impacts. The next stage to improve a car- safety performance in frontal impacts is to improve its compatibility for car-to-car impacts and for collisions against objects and HGVs. Compatibility consists of improving both a car- self and partner protection in a manner such that there is good interaction with the collision partner and the impact energy is absorbed in the car- frontal structures in a controlled way which results in a reduction of injuries. Over the last ten years much research has been performed which has found that there are four main factors related to a car- compatibility [Edwards 2003, Edwards 2007]. These are structural interaction potential, frontal force matching, compartment strength and the compartment deceleration pulse and related restraint system performance. The objective of the FIMCAR FP7 EC-project was to develop an assessment approach suitable for regulatory application to control a car- frontal impact and compatibility crash performance and perform an associated cost benefit analysis for its implementation.
Accident analysis
(2014)
For the assessment of vehicle safety in frontal collisions compatibility (which consists of self and partner protection) between opponents is crucial. Although compatibility has been analysed worldwide for years, no final assessment approach has been defined to date. Taking into account the European Enhanced Vehicle safety Committee (EEVC) compatibility and frontal impact working group (WG15) and the EC funded FP5 VC-COMPAT project activities, two test approaches have been identified as the most promising candidates for the assessment of compatibility. Both are composed of an off-set and a full overlap test procedure. In addition another procedure (a test with a moving deformable barrier) is getting more attention in today- research programmes. The overall objective of the FIMCAR project is to complete the development of the candidate test procedures and propose a set of test procedures suitable for regulatory application to assess and control a vehicle- frontal impact and compatibility crash safety. In addition an associated cost benefit analysis should be performed. The specific objectives of the work reported in this deliverable were: - Determine if previously identified compatibility issues are still relevant in current vehicle fleet: Structural interaction, Frontal force matching, Compartment strength in particular for light cars. - Determine nature of injuries and injury mechanisms: Body regions injured o Injury mechanism: Contact with intrusion, Contact, Deceleration / restraint induced. The main data sources for this report were the CCIS and Stats 19 databases from Great Britain and the GIDAS database from Germany. The different sampling and reporting schemes for the detailed databases (CCIS & GIDAS) sometimes do not allow for direct comparisons of the results. However the databases are complementary " CCIS captures more severe collisions highlighting structure and injury issues while GIDAS provides detailed data for a broader range of crash severities. The following results represent the critical points for further development of test procedures in FIMCAR.
Although the number of road accident casualties in Europe (EU27) is falling the problem still remains substantial. In 2011 there were still over 30,000 road accident fatalities. Approximately half of these were car occupants and about 60 percent of these occurred in frontal impacts. The next stage to improve a car's safety performance in frontal impacts is to improve its compatibility. The objective of the FIMCAR FP7 EU-project was to develop an assessment approach suitable for regulatory application to control a car's frontal impact and compatibility crash performance and perform an associated cost benefit analysis for its implementation. This paper reports the cost benefit analyses performed to estimate the effect of the following potential changes to the frontal impact regulation: • Option 1 " No change and allow current measures to propagate throughout the vehicle fleet. • Option 2 " Add a full width test to the current offset Deformable Barrier (ODB) test. • Option 3 " Add a full width test and replace the current ODB test with a Progressive Deformable Barrier (PDB) test. For the analyses national data were used from Great Britain (STATS 19) and from Germany (German Federal Statistical Office). In addition in-depth real word crash data were used from CCIS (Great Britain) and GIDAS (Germany). To estimate the benefit a generalised linear model, an injury reduction model and a matched pairs modelling approach were applied. The benefits were estimated to be: for Option 1 "No change" about 2.0%; for Option 2 "FW test" ranging from 5 to 12% and for Option 3 "FW and PDB tests" 9 to 14% of car occupant killed and seriously injured casualties.