Refine
Year of publication
Document Type
- Conference Proceeding (41)
- Book (4)
- Article (2)
- Working Paper (1)
Keywords
- Conference (39)
- Konferenz (39)
- Accident (34)
- Unfall (34)
- Germany (27)
- Injury (27)
- Deutschland (26)
- Verletzung (26)
- Schweregrad (Unfall, Verletzung) (19)
- Severity (accid, injury) (17)
Institute
Bedingt durch ihre Definition - mindestens 24-stündiger Klinikaufenthalt - umfasst die Kategorie der Schwerverletzten in der amtlichen Verkehrsunfallstatistik eine große Breite tatsächlicher Verletzungsschweregrade. Durch das hohe persönliche Leid sowie die bedeutsamen volkswirtschaftlichen Kosten sind innerhalb dieser Gruppe die Schwerstverletzten von besonderem Interesse. Es werden drei Studien der Bundesanstalt für Straßenwesen (BASt) vorgestellt, in denen auf Grundlage verschiedener Datenquellen Verletzungsmuster und Verletzungsschwere in Zusammenhang mit Parametern des Unfallgeschehens gebracht wurden. Zusammengefasst zeigt sich, dass (a) die Zahl der Schwerstverletzten sich in den letzten Jahren nicht in gleichem Maße reduziert hat, wie die Zahlen Schwerverletzter und Getöteter; (b) sich über verschiedene Datenquellen (GIDAS, TraumaRegister DGU, Rettungsdienst, Polizei) ähnliche Verletzungsmuster in Abhängigkeit der Verkehrsteilnahme zeigen; (c) durch die Verbindung von medizinischen Daten des TraumaRegisters mit Daten der Polizei gute Voraussetzungen für eine umfangreiche Erfassung Schwerstverletzter in Deutschland geschaffen werden könnten.
[Introduction:] A large number of road users involved in road traffic crashes recover from their injuries, but some of them never recover fully and suffer from some kind of permanent disability. In addition to loss of life or reduced quality of life, road accidents carry many and diverse consequences to the survivors such as legal implications, economic burden, job absences, need of care from a third person, home and vehicle adaptations as well as psychological consequences. Within an EU funded project MOVE/C4/SUB/2011-294/SI2.628846 (REHABIL AID) these consequences were analyzed more detailed.
Still correlated with high mortality rates in traffic accidents traumatic aortic ruptures were frequently detected in unprotected car occupants in the early years. This biomechanical analysis investigates the different kinds of injury mechanisms leading to traumatic aortic injuries in todays traffic accidents and how the way of traffic participation affects the frequency of those injuries over the years. Based on GIDAS reported traffic accidents from 1973 to 2014 are analyzed. Results show that traumatic aortic injuries are mainly observed in high-speed accidents with high body deceleration and direct load force to the chest. Mostly chest compression is responsible for the load direction to the cardiac vessels. The main observed load vector is from caudal-ventral and from ventral solely, but also force impact from left and right side and in roll-over events with chest compression lead to traumatic aortic injuries. Classically, the injury appeares at the junction between the well-fixed aortic arch and the pars decendens following a kind of a scoop mechanism, a few cases with a hyperflexion mechanism are also described. In our analysis the deceleration effect alone never led to an aortic rupture. Comparing the past 40 years aortic injuries shift from unprotected car occupants to today's unprotected vulnerable road users like pedestrians, cyclists and motorcyclists. Still the accident characteristics are linked with chest compression force under high speed impact, no seatbelt and direct body impact.
To elucidate the risk of pedestrians, bicycle and motorbike users, data of two accident research units from 1999 to 2014 were analysed in regard to demographic data, collision details, preclinical and clinical data using SPSS. 14.295 injured vulnerable road users were included. 92 out of 3610 pedestrians ("P", 2.5%), 90 out of 8307 bicyclists ("B", 1.1%) and 115 out of 4094 motorcycle users ("M", 2.8%) were diagnosed with spinal fractures. Thoracic fractures were most frequent ahead of lumbar and cervical fractures. Car collisions were most frequent mechanism (68, 62 and 36%). MAIS was 3.8, 2.8 and 3.2 for P, B and A with ISS 32, 16 and 23. AIS-head was 2.2, 1.3 and 1.5). Vulnerable road users are at significant risk for spine fractures. These are often associated with severe additional injuries, e.g. the head and a very high overall trauma severity (polytrauma).
While cyclists and pedestrians are known to be at significant risk for severe injuries when exposed to road traffic accidents (RTAs) involving trucks, little is known about RTA injury risk for truck drivers. The objective of this study is to analyze the injury severity in truck drivers following RTAs. Between 1999 and 2008 the Hannover Medical School Accident Research Unit prospectively documented 43,000 RTAs involving 582 trucks. Injury severity including the abbreviated injury scale (AIS) and the maximum abbreviated injury scale (MAIS) were analyzed. Technical parameters (e.g. delta-v, direction of impact), the location of accident, and its dependency on the road type were also taken into consideration. The results show that the safety of truck drivers is assured by their vehicles, the consequence being that the risk of becoming injured is likely to be low. However, the legs especially are at high risk for severe injuries during RTAs. This probability increases in the instance of a collision with another truck. Nevertheless, in RTAs involving trucks and regular passenger vehicles, the other party is in higher risk of injury.
For the avoidance of traffic accidents by means of advanced driver assistance systems the knowledge of failures and deficiencies a few seconds before the crash is of increasing importance. This information e.g. is collected in the German accident survey GIDAS by an interview derived from the ACAS methodology. However to display the whole range of accident causation factors additional information is needed on enduring factors of the system components "human", "infrastructure" and "machine". On the strategic level these accident moderating factors include long term influences such as medical preconditions or a general higher risk taking behavior as well as influences on the immediate conflict level such as an aggressive response to a perceived previous traffic conflict. This study was conducted to examine the feasibility of collecting such causation information in the scope of an in-depth accident investigation like GIDAS. Due to the comprehensive amount of information necessary to estimate the moderating factors the collection of the information is distributed to different methods. 5 cases of real world crashes have been investigated where information was collected on-scene and retrospective by interviews. The identified moderating factors of the accidents and the method for collecting the information are displayed.
Injury severity of e.g. pedestrians or bikers after crashes with cars that are reversing is almost unknown. However, crash victims of these injuries can frequently be seen in emergency departments and account for a large amount of patients every year. The objective of this study is to analyze injury severity of patients that were crashed into by reversing cars. The Hannover Medical School local accident research unit prospectively documented 43,000 road traffic accidents including 234 crashes involving reversing cars. Injury severity including the abbreviated injury scale (AIS) and the maximum abbreviated injury scale (MAIS) was analyzed as well as the location of the accident. As a result 234 accidents were included into this study. Pedestrians were injured in 141 crashes followed by 70 accidents involving bikers. The mean age of all crash victims was 57 -± 23 years. Most injuries took place on straight stretches (n = 81) as well as parking areas (n = 59), entries (n = 36) or crossroads (n = 24). The AIS of the lower extremities was highest followed by the upper extremities. The AIS of the neck was lowest. The mean MAIS was 1.3 -± 0.6. The paper concludes that the lower extremities show the highest risk to become injured during accidents with reversing cars. However, the risk of severe injuries is likely low.
Es wurden Unfälle, die im Rahmen des Forschungsprojektes "Erhebungen am Unfallort" dokumentiert wurden, hinsichtlich der Häufigkeit und der Charakteristik von Pkw-Mehrfachkollisionen analysiert. Beschrieben wurden bei einer vergleichenden Gegenüberstellung von Einfach- und Mehrfachkollisionen die Besonderheiten, die die Mehrfachkollisionen prägen, und zwar im Vorfeld des Unfallgeschehens wie auch im Unfallgeschehen selbst. Mit allen beobachteten Unterschieden der Merkmalsausprägungen ist eine Steigerung der Ausgangsgeschwindigkeit, also der Geschwindigkeit, die vor dem Unfallgeschehen gefahren wurde, verbunden. Die Entstehungswahrscheinlichkeit von Mehrfachkollisionen steigt mit der Zunahme der Fahrgeschwindigkeiten. Geschlechtsspezifische Unterschiede sind lediglich für die Wahl der Ausgangsgeschwindigkeiten vor dem Unfallereignis von Bedeutung. Keine Rolle spielen Fahrzeugeigenschaften bei der Entstehung von Mehrfachkollisionen. Bei Mehrfachkollisionen wurde häufig beobachtet, dass Pkw seitlich mit Objekten am Straßenrand (Leitplanke, Bäume etc.) zusammenstoßen. Bei Seitenkollisionen treten überdurchschnittlich schwere Fahrzeugdeformationen sowie schwere Verletzungen am Kopf, im Thoraxbereich und an den oberen Extremitäten auf. Die Rekonstruktion von Mehrfachkollisionen wird durch ein oftmals komplexes Spuren- und Deformationsbild erschwert. Hilfreich erweisen sich fotogrammetrische Verfahren wie Stereoaufnahmen und Draufsichtfotografie.
Durch chemisch-toxikologische Analysen von Blut- und Urinproben unfallverletzter Fahrer sowie eine detaillierte Unfallanalyse werden Daten über die Häufigkeit von Medikamenten, Drogen und Alkohol bei Verkehrsunfällen gewonnen und die Relevanz von Befunden hinsichtlich einer Unfallkausalität geprüft. Das Untersuchungskollektiv umfasst 500 unfallverletzte Fahrer in den Erhebungsgebieten Hannover und Saarland. In über einem Drittel der verunfallten Fahrer wurden verkehrsmedizinisch relevante Wirkstoffe nachgewiesen. Alkohol spielt hierbei eine dominante Rolle, zum Teil in Verbindung mit Medikamenten. In über drei Viertel der alkoholpositiven Proben wurden Blutalkoholkonzentrationen über 0,8 Promille gemessen. Ein Viertel aller Befunde lag über 1,7 Promille. Aus den Ergebnissen der Untersuchung wurde deutlich, dass aus dem Nachweis verkehrsmedizinisch relevanter Substanzen nicht zwingend ein Kausalzusammenhang zur Unfallverursachung abzuleiten ist. Bei 19 % der alkoholisierten Fahrer war der Unfall nicht auf das Fehlverhalten der Fahrer zurückzuführen.
This study aimed at prediction of long bone fractures and assessment of lower extremity injury mechanisms in real world passenger car to pedestrian collision. For this purpose, two pedestrian accident cases with detail recorded lower limb injuries were reconstructed via combining MBS (Multi-body system) and FE (Finite element) methods. The code of PC Crash was used to determine the boundary conditions before collision, and then MBS models were used to reproduce the pedestrian kinematics and injuries during crash. Furthermore, a validated lower limb FE model was chosen to conduct reconstruction of injuries and prediction of long bone fracture via physical parameters of von Mises stress and bending moment. The injury outcomes from simulations were compared with hospital recorded injury data and the same long bone fracture patterns and positions can be observed. Moreover, the calculated long bone fracture tolerance corresponded to the outcome from cadaver tests. The result shows that FE model is capable to reproduce the dynamic injury process and is an effective tool to predict the risk of long bone fractures.
Since a number of human models have been developed it appears sensible to use these models also in the accident analysis. Especially the understanding of injury mechanisms and probably even injury risk curves can be significantly improved when interesting accidents are reconstructed using human body models. However, an important limitation for utilising human models for accident reconstruction is the effort needed to develop detailed FE models of the accident partners or to prepare the human model reconstruction by running physical accident reconstructions. The proposed approach for using human models for accident reconstruction is to use simplified and parametric car models. These models can be adapted to the crash opponents in a fast and cost effective way. Although, accuracy is less compared to detailed FE models, the relevant change in velocity can be simulated well, indicating that the computation of a detailed crash pulse is not needed. Two frontal impact test accidents that were reconstructed experimentally and using the parametric car models are indicating sufficient correlation of the adapted parametric car models with the full scale crash reconstructions. However, further developments of the parametric models to be capable for the use in lateral impacts and rear impacts are needed. For the PC Crash simulation runs the output sampling rate is too large to allow sufficient analysis. In addition the performance appears to be too general.
This study aimed at comparing head Wrap Around Distance (WAD) of Vulnerable Road User (VRU) obtained from the German in-depth Accident Database (GIDAS), the China in-depth Accident Database (CIDAS) and the Japanese in-depth Accident Database (ITARDA micro). Cumulative distribution of WAD of pedestrian and cyclist were obtained for each database (AIS2+) showing that WAD of cyclists were larger than the ones of pedestrians. Comparing three regions, the 50%tile WAD of GIDAS was larger than that of both Asian accident databases. Using linear regression that might predict WAD of pedestrians and cyclists from Impact speed and VRU height, WADs were calculated to be 206cm/219cm (Pedestrian/Cyclist) for GIDAS, 170cm/192cm for CIDAS and 211cm/235cm for ITARDA. In addition, this study may be helpful for reconsideration of WAD measurement alignment between accident reconstruction and test procedures.
Within the COST Action TU1101 the working group WG 1 is dealing with acceptance criteria and problems in helmet use while bicycling concerning conspicuity, thermal stress, ventilation deficits and other potential confounding. To analyze the helmet usage practice of bicyclists in Europe a questionnaire was developed in the scope of working group 1 to collect relevant information by means of a field study. The questionnaire consists of some 66 questions covering the fields of personal data of the cyclist, riding und helmet usage habits, information concerning the helmet model and the sensation of the helmet, as well as information on previous bicycle accidents. A second complementary study is conducted to analyze if the use of a bicycle helmet influences the seating geometry and the posture of cyclists when riding a bicycle and if the if the helmet vertically limits the vision. For this purpose cyclists with and without helmets were photographed in real world situations and relevant geometrical values such as the decline of the torso, the head posture of the upper vertical vision limit due to the helmet were established from the photos. The interim results of the field studies which were conducted in Germany by the Hannover Medical School are presented in this study. Some 227 questionnaires were filled out, of which 67 participants had used a helmet and 42 of the 227 participants have had a bicycle accident before. For the analysis of the riding position and posture of the cyclist over 40 pictures of riders with a helmet and over 240 pictures of riders without a helmet were measured concerning the seating geometry to describe the influence of using a bicycle helmet. Some results in summary: From the riders interviewed with the questionnaire only 11% of the city bike riders and 12% of the mountain bike riders always used the helmet, while 38% of the racing bike riders and 88% of the e-bike-riders always used the helmet. The helmet use seems not to change the sensation of safety of cycling compared to the use of a car. The arguments for not wearing a helmet are mostly stated to be the short distance of a trip, high temperatures or carelessness and waste of time. The reasons for using a helmet are stated to be the feeling of safety and being used to using a helmet. Being a role model for others was also stated to be a reason for helmet use. Concerning the sensation of the helmet 9% of the riders reported problems with the field of vision when using a helmet, 57% saw the problem of sweating too much, and 10% reported headaches or other unpleasant symptoms like pressure on the forehead when using the helmet. The analysis of the seating posture from the pictures taken of cyclists revealed that older cyclists generally have a riding position where the handle bar is higher than the seat (0-° to 10-° incline from seat to handlebar), while younger riders had a higher variance (between -10-° decline and 20-° incline). Further, elderly riders and riders with helmets seem to have a more upright position of the upper body when cycling. The vertical vision limit due to the helmet is determined by the front rim of the helmet (mostly the sun shade). Typical values here range from 0-° (horizontal line from the eye to the sun shade) to 75-° upwards, in which elderly riders tend to have a slightly higher vertical vision limit possibly due to the helmet being worn more towards the face.
Introduction: The method of causation analysis applied under the German accident survey GIDAS, which is based on Accident Causation Analysis System (ACAS) focuses on an on-scene data collection of predominantly directly event-related causation factors which were crucial in the accident emergence as situational resulting events and influences. The paradigm underlying this method refers to the findings of the psychological traffic accident research that most causally relevant features of the system components human, infrastructure and vehicle technology are found directly in the situation shortly before the accident. This justifies the survey method which is conducted directly at the accident (on-scene), shortly after the accident occurrence (in-time) with the detection of human-related causes (in-depth). Human aspects of the situation analysis that interact and influence the risk situations shortly before the collision are reported as errors, lapses, mistakes and failures in ACAS in specific categories and subcategories. Thus methodically ACAS is designed primarily for the collection of accident features on the level of operational action, which certainly leads to valid findings and behavioral causes of accidents. The enhancement by means of Moderating Conditions concerns the pre-crash phase in different levels: strategical, tactical and operational.
Erhebungen am Unfallort
(1983)
Der Bericht einer Projektgruppe bei der Bundesanstalt für Straßenwesen beschreibt einleitend das Projekt "Unfallerhebung Hannover (uh)". Weitere Spezialerhebungen aus dem Bereich der empirischen Unfallforschung werden beispielhaft dargestellt und mit der Unfallerhebung Hannover verglichen. Der Vergleich dient der Herausarbeitung spezieller Eigenschaften und Möglichkeiten dieses Projektes und der Beurteilung der Aussagefähigkeit des gewonnenen Datenmaterials. Unter Berücksichtigung bereits vorhandener Daten aus anderen Erhebungen und des Datenbedarfs der Unfallforschung wird die Notwendigkeit von Erhebungen am Unfallort erörtert und alternative Konzepte hierfür entwickelt. Abschließend wird eine neue nutzungsorientierte Konzeption für ein zukünftiges Projekt zur Datengewinnung durch Erhebung am Unfallort vorgeschlagen.
An approach to the standardization of accident and injury registration systems (STAIRS) in Europe
(1998)
STAIRS is a European Commission funded study whose aim is to produce a set of guidelines for a harmonised, crash injury database. The need to evaluate the effectiveness of the forthcoming European Union front and side impact directives has emphasised the need for real world crash injury data-sets that can be representative of the crash population throughout Europe. STAIRS will provide a methodology to achieve this. The ultimate aim of STAIRS is to produce a set of data collection tools which will aid decision making on vehicle crashworthiness as well as providing a means to evaluate the effectiveness of safety regulations. This paper will disseminate the up-to-date findings of the group as they try to harmonise their methods. The stage has been reached where studies into the diverse methods of the UK, French and German systems of crash injury investigation have been undertaken. An assessment has already been made of the relationships between the three current systems in order to define the areas of agreement and divergence. The conclusions reached stated that there were many areas that are already closely related and that the differences were only at the detailed level. With the emphasis on secondary safety and injury causation, core data sets were decided upon, taking into account: vehicle description, collision configuration, structural response of vehicles, restraint and airbag performance, child restraint performance, Euro NCAP, pedestrian and vehicle occupant kinematics, injury description and causation. Each variable was studied objectively, the important elements isolated and developed into a form that all partners were agreeable on. A glossary of terms is being developed as the project progresses which includes ISO standards and other definitions from the associated CAREPLUS project, which addresses the comparability of national data sets. A major consideration of the group was the data collection method to be employed. The strengths and weaknesses of each study were investigated to obtain a clear idea of which aspects offered the best way forward. The quality of this information and transference into a common format, as well as the necessary error checking systems to be employed have just been completed and are described. In tandem with this area of study the problem of the statistical relationship of each sample to the national population is also being investigated. The study proposes a mechanism to use a sample of crash injury data to represent the national and international crash injury problem
Die amtliche Straßenverkehrsunfallstatistik kann nur in begrenztem Umfang Informationen zu Unfallentstehung, Unfallablauf sowie zu den zugrunde liegenden Verletzungsmechanismen bereitstellen. Verbleibende Informationslücken lassen sich durch spezielle Erhebungsteams schließen, die Verkehrsunfälle nach wissenschaftlichen Aspekten dokumentieren. Hierzu unterhalten das Bundesministerium für Verkehr, Bau- und Wohnungswesen und die Bundesanstalt für Straßenwesen seit 30 Jahren ein Forschungsprojekt zur Unfalldatenerhebung an der Medizinischen Hochschule Hannover. Seit 1999 erfolgt eine Kooperation mit der Forschungsvereinigung Automobiltechnik (FAT), die ein weiteres Erhebungsteam an der Technischen Universität Dresden unterhält. Die Unfalldaten gehen in die gemeinsame GIDAS-Datenbank ein, aus der sich umfassende Informationen zu den breit gefächerten Forschungsfeldern "Passive und aktive Fahrzeugsicherheit", "Verkehrs- und Rettungsmedizin" und "Straßenbezogene Sicherheitsfragen" gewinnen lassen. In der Zukunft werden Unfallvermeidungsstrategien und Unfallursachenprophylaxe im Vordergrund einer prospektiven Unfallforschung stehen. Die Daten werden auch in Zukunft für die weitere Verbesserung der Verkehrssicherheit einen bedeutenden Beitrag leisten.
Since its beginning in 1999, the German In-Depth Accident Study (GIDAS) evolved into the presumably leading representative road traffic accident investigation in Europe, based on the work started in Hanover in 1973. The detailed and comprehensive description of traffic accidents forms an essential basis for vehicle safety research. Due to the ongoing extension of demands of researchers, there is a continuous progress in the techniques and systematic of accident investigation within GIDAS. This paper presents some of the most important developments over the last years. Primary vehicle safety systems are expected to have a significant and increasing influence on reducing accidents. GIDAS therefore began to include and collect active safety parameters as new variables from the year 2005 onwards. This will facilitate to assess the impact of present and future active safety measures. A new system to analyse causation factors of traffic accidents, called ACASS, was implemented in GIDAS in the year 2008. The whole process of data handling was optimised. Since 2005 the on-scene data acquisition is completely conducted with mobile tablet PCs. Comprehensive plausibility checks assure a high data quality. Multi-language codebooks are automatically generated from the database structure itself and interfaces ensure the connection to various database management systems. Members of the consortium can download database and codebook, and synchronize half a terabyte of photographic documentation through a secured online access. With the introduction of the AIS 2005 in the year 2006, some medical categorizations have been revised. To ensure the correct assignment of AIS codes to specific injuries an application based on a diagnostic dictionary was developed. Furthermore a coding tool for the AO classification was introduced. All these enhancements enable GIDAS to be up to date for future research questions.
With an ever rising human life expectancy the share of elderly people in society is constantly rising. This leads to the fact that at the same rate the share of people with age related diseases such as dementia and poor eyesight taking part in traffic will rise and therefore traffic accidents caused by this group of people due to the disease will play an ever greater role. This Situation will be among the future challenges of road safety work. At present this study displays specific characteristics of accidents caused by elderly car drivers (aged 65 or higher) based on the analysis of the German In-Depth Accident Study GIDAS. Herein almost 1000 elderly car drivers were identified as accident participants in the years 2008 to 2011. The focus of this study lies on identifying special types of accidents which are caused by elderly drivers and on characterizing these types with the information gathered on scene and by interviewing the participants. The main evidence analyzed is the knowledge about the accident locality, the trajectories of the participants as well as the reasons for the occurrence of the accidents. Furthermore personal information such as the personal condition before the accident and driving purposes is used to identify patterns of contributing circumstances for accidents caused by elderly traffic participants.
Introduction: Spine injuries pose a considerable risk to life and quality of life. The total number of road deaths in developed countries has markedly decreased, e.g. in Germany from over 20000 in 1970 to less than 4000 in 2010, but little is known how this is reflected in the burden of spine fractures of motor vehicle users. In this study, we aimed to show the actual incidence of spine injuries among drivers and front passengers and elucidate possible dependencies between crash mechanisms and types of injuries.
From literature well-known analyzes on risks, hazards and causes of accidents of older drivers are amended by the present study in which a comparison of the specific features of accident causes of older car drivers (older than 60 years) and of younger car drivers (under 25 years) is conducted. Mainly the question is pursued if specific errors, mistakes and lapses are predominant in the two different age groups. The analysis system ACAS (Accident Causation Analysis System) used hereby consists of a sequential system of accident causation factors from the human, the technical and the infrastructural field, whereupon for this study the influence of the human features on the accident development in two different age groups is of interest. ACAS is both an accident model and an analysis and classification system, which describes the human participation factors of an accident and their causes in the temporal sequence (from the perceptibility to concrete action errors) taking into consideration the logical sequence of individual basic functions. In five steps (categories) of a logical and temporal sequence the hierarchical system makes human functions and processes as determinants of accident causes identifiable. The methodology specifically focuses on the use in so-called "In-Depth" and "On-Scene" investigation studies. With the help of the system for each accident participant one or more of five hypotheses of human cause factors are formed and then specified by appropriate verification criteria. These hypotheses in turn are further specified by indicators in such manner that the coding of the causation factors by a code system meets the needs of database processing and are accessible to a quantitative data analysis. The first results of the descriptive comparison of the two age groups concern mainly differences in the functional levels "information admission/perception" (where the elderly drivers have more difficulties than the young ones) and "information processing/evaluation" (where the younger drivers show more problems). Concerning the cognitive function of "planning" the group of younger drivers seems to be more often involved in an accident because of excessive speed.
Pedestrian and cyclist are the most vulnerable road users in traffic crashes. One important aspect of this study was the comparable analysis of the exact impact configuration and the resulting injury patterns of pedestrians and cyclists in view of epidemiology. The secondary aim was assessment of head injury risks and kinematics of adult pedestrian and cyclists in primary and secondary impacts and to correlate the injuries related to physical parameters like HIC value, 3ms linear acceleration, and discuss the technical parameter with injuries observed in real-world accidents based documented real accidents of GIDAS and explains the head injuries by simulated load and impact conditions based on PC-Crash and MADYMO. A subsample of n=402 pedestrians and n=940 bicyclists from GIDAS database, Germany was used for preselection, from which 22 pedestrian and 18 cyclist accidents were selected for reconstruction by initially using PC-Crash to calculate impact conditions, such as vehicle impact velocity, vehicle kinematic sequence and throw out distance. The impact conditions then were employed to identify the initial conditions in simulation of MADYMO reconstruction. The results show that cyclists always suffer lower injury outcomes for the same accident severity. Differences in HIC, head relative impact velocity, 3ms linear contiguous acceleration, maximum angular velocity and acceleration, contact force, throwing distance and head contact timing are shown. The differences of landing conditions in secondary impacts of pedestrians and cyclists are also identified. Injury risk curves were generated by logistic regression model for each predicting physical parameters.
Although the statistics show a decreasing rate of child injuries and fatalities in German road accidents more efforts can be made to protect children in cars e.g. by developing appropriate child restraint systems. An important part in of this work can be achieved with the help of crash tests using child dummies. However these crash tests cannot completely reflect the situation of real world crashes as factors like children moving out of the optimal position or children incorrectly fastened by their parents are difficult to predict. Therefore this study gives an overview over the current accident and injury situation of child occupants in cars in German road accidents.
The purpose of this study was to analyse the actual injury situation of bicyclists regarding accidents involving more than one bicyclist. Bicyclists were included in a medical and technical analysis to create a basis for preventive measures and discovered repeating accident patterns and circumstances such as daytime, environment, helmet use rate. Technical and medical data were collected at the scene, shortly after accident. The population was compared focusing on bicycle versus bicycle accidents. Technical analysis included speed at crash, type of collision, impact angle, environment, used lane and relative velocity. Medical analysis included injury pattern and severity (AIS, ISS). Included were 578 injured bicyclists in 289 accidents from years 1999 to 2008, 61 percent were male (n=350) and 39 percent female (n=228). Sixty-seven percent ranged between 18 to 64 years of age, twelve percent each between 13 to 17 years of age and older than 65 years, eight percent between 6 to 12 years and one percent between 2 to 5 years.. Crashes took place in urban areas in 92 percent, in rural areas in 8 percent. Weather conditions were dry lanes in 97 percent and wet conditions in 3 percent. Eighty-three percent of all accidents happened during daytime, ten percent during night, and seven percent during dawn. The helmet use rate was only 7,5 percent in all involved bicyclists. The mean Maximum Abbreviated injury scale, Injury severity score was 1,31. Bicyclists are still minimally- or unprotected road users. The helmet use rate is unsatisfactorily low. The incidence of bicycle to bicycle crashes is high. Most of these accidents take place in urban areas. The level and pattern of injuries is moderate. Most of the more severe injuries occur to the head and could have been avoided by frequent helmet use.