Abstract - Bone fracture patterns could be crucial in reconstructing the nature of loading, especially in the lower limb and upper limb kinematics in vehicle-pedestrian crashes. In addition, use of FE bone models can be a handy tool to predict vehicle impact velocity and the impact direction. The point of fracture initiation in bone loading has been predicted quite accurately earlier. A methodology that predicts bone crack initiation and its propagation pattern for the six known loading directions using a single material and failure model is presented.

INTRODUCTION

Types of fractures in bone differs with impact direction and impact velocity [1, 2]. This property of bone can be exploited for reconstructing the nature of loading and impact speed. The different classifications of fractures are listed in Figure 1. The three point bending test is widely used to characterize bending behavior of materials [3, 4]. In vehicle-pedestrian crashes bone injuries are also caused due to bending. Three-point bending finite element simulations of long bones under impact have been reported [5, 6], but the direction of impact and types of fractures have not been correlated. To the knowledge of authors no previously published literature is available on prediction of types of fractures based on loading directions using finite element method. However large numbers of literature are available on bone micro mechanics [7-16] which played an important role in the investigation of current work.

Application of principles of dynamic fracture mechanics (DFM) give good results when specimens are modeled in 2D [17]. It is not as convenient to use DFM for 3D specimens and when the crack is loaded in mixed modes. Additionally, fracture mechanics analysis is done using an initial crack. As predicting crack initiation is one of the objectives; an initial crack cannot be defined a priori. This limits the applicability of the DFM approach.

The objective of this work is to predict the types of bone fractures for different loading directions (Anterior-A, Posterior-P, Lateral-L, Medial-M) using a single material and failure model, and thereby using the methodology as a reconstructing tool in vehicle-pedestrian crashes.

METHOD

Mesh

The mesh of a finite element model of human femur has been developed using CT scan data [18-22]. The CT scans were obtained using a GE high speed scanner (80 kV, 120 mA, 0.6 mm slice thickness, 512 x 512 matrix). A surface mesh is obtained from the CT scan data using Mimics™. The surface mesh was converted to solid mesh using Hypermesh™ after cleaning up duplicate and intersecting triangles from the surface mesh. The solid mesh consists of 54,575 linear tetrahedral elements, 14,847 nodes with approximately 3 elements through the radius. The supports and impactor are modeled with rigid elements. The model is assigned a varying density and Young's modulus based on the Hounsfield number from CT scan as proposed by [23]. The length of the femur from the medial condyle to the head of the femur is 410 mm. The highest outer diameter in the mid-diaphysis region is 23 mm and the highest inner diameter is 8 mm.
Experiment description

Suitability of two failure criteria, (1) equivalent plastic strain (using 2% strain as critical strain) (2) dilatational cut-off stress (using 50 MPa critical stress), has been evaluated. Kress et al., have reported six different impact conditions from two different setups [1]. The first setup contains a pneumatic accelerator which propels a cart (50 kg) toward the specimen at a velocity of 7.5 m/s. An instrumented pipe of diameter 4.13 cm and length 10 cm is fixed to the cart front (Figure 2a). In the second setup the pipe is swung like a pendulum (Figure 2b). In both setups and in all cases of impact the specimen is impacted in the mid-shaft region and the specimen is simply supported. Fracture patterns in six cases including, A-P, P-A, L-M, M-L impacts using setup-1 and A-P, L-M impacts using setup-2 were reported. In our work we have simulated these cases and reconstructed the type of fracture reported by them.

![Figure 1 Different types of fractures (both figures adapted from [1])](image1)

![Figure 2 (a) The cart setup (b) The pendulum setup. (both figures adapted from [1])](image2)
Finite element model

The corresponding finite element model setup is shown in Figure 3. The most commonly used fracture criterion for long bones is equivalent plastic strain criteria. When the model was simulated using equivalent plastic strain criterion, irrespective of loading directions and the experimental setup the bone always fractured transversely and often propagated from the point of impact. Then the model was simulated using dilatational cut-off stress as fracture criteria. This criterion uses the dilatational stress as a failure measure to model dynamic failure. The failure criterion assumes that failure occurs when the dilatational stress, becomes more tensile than the user-specified dilatational cutoff stress [24]. As bones are weaker in tension compared to compression [25-29], it can be expected that the tensile behavior of bone contributes more to its failure. It is also suggested that dilatational stress plays a major role in yielding and failure of porous materials like bone [30]. The average bending strength of femur is 147 Mpa [31]. The dilatational cut-off stress is taken as the one third of the bending strength [32], which is 50 MPa, for the reconstruction.

RESULTS

Using the proposed dilatational cut off stress criterion, all six cases were simulated. In all the cases the crack initiated from the tensile side as in the experimental cases. Four of the six cases were P-A, L-M, M-L loadings were reproduced well (Figure 4). For P-A plane of impact the FE model resulted in tensile wedge fracture (Figure 4a) where the fracture initiated from the tensile side at two places and propagated towards the compressive side at an angle with the vertical with opposite slopes resembling wings of a butterfly. Hence it is also called as butterfly fracture which is shown in Figure 1 as TW. For L-M and M-L plane of impact the FE model resulted in oblique fracture which is seen in the field. Oblique fractures initiate from the tensile side frequently at an offset from the line of impact (Figure 4b-d) and propagates towards the compressive side at an angle to the vertical which is shown in Figure 1 as O.

It is reasonable to assert that the fractures were predicted well because it is generally accepted that if the maximum angle between the propagated crack and the plane of cross – section is greater than
30˚ [33] then the fracture is oblique type. The angle of oblique, tensile wedge fractures produced during reconstruction was confirmed to be above 30˚. The two A-P loading cases were not reconstructed by the model. Segmental and transverse fracture which is reported to be a lower probability event [1] is also reproduced by the current model (Figure 5). The limiting stress had to be decreased to 45 MPa to reproduce oblique and increased to 55 MPa to reproduce comminuted fractures as seen in the field (Figure 6). This is a 10% variation over the nominal value and is in line with the tensile strength variation reported (80 Mpa to 240 Mpa) [6] for human bones.

DISCUSSION
Out of the six cases for which simulation was done, fracture was reconstructed for four of the cases. In the two cases where the impact was in the A-P direction, the model predicted segmental and transverse fractures when 50MPa critical stress was used. However, on varying the critical stress between 45 and 55MPa (± 10% of 50MPa) variation in the type of fracture was observed. At 55MPa and 45MPa oblique and comminution fractures were predicted for pendulum and cart setup respectively, which matched with the experimental results.

This critical stress may vary due to bone porosity, density and elastic modulus variation from subject to subject. There is thus a need to conduct fresh experiments so that specimen specific models can be made for correlating simulation results.

Table 1 shows experimental results of the peak contact force for dynamic three point bending tests conducted on male femur with an average age of 69.2, 83.5, 69.3, 76.3 for A-P, P-A, L-M, M-L plane of impact respectively [1]. Figure 7 shows the comparison of peak contact force between experiment and simulation. It can be observed from the figure that in all cases the current FE model over estimated the peak impact force, however the predicted values lie within the range of standard deviation reported which makes reasonable to assume that this variation may be due to the difference between the material properties of bones reported in experiments and in the reconstruction.

<table>
<thead>
<tr>
<th>Impact plane</th>
<th>Peak contact force (kN)</th>
<th>SD (kN)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-P</td>
<td>5.70</td>
<td>2.68</td>
<td>50</td>
</tr>
<tr>
<td>P-A</td>
<td>2.48</td>
<td>0.69</td>
<td>14</td>
</tr>
<tr>
<td>L-M</td>
<td>4.75</td>
<td>4.07</td>
<td>10</td>
</tr>
<tr>
<td>M-L</td>
<td>2.29</td>
<td>1.25</td>
<td>9</td>
</tr>
</tbody>
</table>

Table 1 Experimental results of dynamic 3-point bending for male femur using pendulum setup[1]
Figure 7 Comparison of peak contact force in impact direction between experiment [1] and simulation for male femur in different impact plane using pendulum setup (a) A-P (b) P-A (c) L-M (d) M-L

To study the variation fracture types with angular orientation, more simulations were carried out by impacting the bone model at fixed angular interval of 22.5° over a full circle with the same impact speed as earlier. The results are shown in Figure 8, the arrow line indicates the direction and point of impact. It is of interest to note that impact at 157.5° and 202.5° angle of impact (having the anterior plane as reference) produced tensile-compression wedge fracture which is the most infrequently reported fracture type. This fracture is similar to tensile wedge but there is a second crack initiation point and the crack propagates towards the compression side giving rise to a chunk which is an inverted tensile wedge (Figure 1 T/C W).

It is not clear why two types of setups were used as reported in [1]. However for impact with the same geometry of the impactor and the same impact speed the two setup at times produced different types of fracture. For example in the A-P plane of impact, the cart setup produced comminution fracture and pendulum setup produced oblique fracture in both experiment and simulation. The peak contact forces for the pendulum set up was 6.2 kN and cart setup it was 5.9 kN in the simulation. The contact area was not the same for both the cases. Figure 9 shows the contact area between the impactor and the specimen for the two cases. For the cart setup, the contact area is 22 mm² which is smaller than the pendulum setup (Figure 9a). The cart impactor contacts the apex (Figure 8) of the anterior side of the long bone leading to stress concentration and stress localization. This is perhaps why the result was a comminution fracture which originates from local failure. In the pendulum setup, as the hammer approaches from the side, the impactor hits the relatively flatter surface of the bone in the A-L side (Figure 8) which results in a contact area of 80 mm² (Figure 9b) which is about four times the contact area in the cart setup and eventually drops to 20 mm² (Figure 9b), however the maximum contact area of 80 mm² is attained during the time of the peak contact force This phenomenon reduces stress concentration in the vicinity of contact and avoided comminution fracture, instead producing oblique fracture.

From contact force history obtained from the simulations (Figure 7) it is seen that in all the planes of impact two peaks were observed. The first peak is observed when the impactor first contacts the specimen. The specimen starts to accelerate. Therefore, momentarily, there is a drop in contact force and the impactor makes its second contact with the specimen and the second peak is observed. In all the planes of impact after the second contact the bone fails and the contact force drops to zero. It is interesting to observe that the bone did not fail after the first peak. For A-P, P-A and L-M planes of impact, the magnitude of the second peak is lesser than the first peak. But for M-L plane of impact the magnitude of the second peak is higher.
LIMITATIONS OF STUDY

A femur model has been used to investigate fracture initiation and pattern due to bending loading. Other loadings like torsion are yet to be investigated. This study was additionally limited by use of isotropic material properties as the CT data currently used does not allow us to generate anisotropic bone properties. Finally the failure criterion used is also isotropic as information in published literature is insufficient as of now to implement anisotropic failure criterion.

CONCLUSION

As fracture type prediction can be considered as a promising tool in reconstructing fracture progression there is a need for a failure criterion with which fracture types can be predicted using a single material and failure model. Material models like elasto-plastic[34, 35], visco-elastic[34-36] have been used to model long bones. Currently equivalent plastic strain criterion is widely used as a failure criteria for long bones. The main setback of this criterion is that it always results in a transverse fracture. Consequently reconstruction of bone fractures for different loading directions using a single material and failure model has not been reported earlier. Additional failure criteria for static cases are also available in literature, viz, strain based criteria[37, 38] and stress based criteria [39]. A failure criterion based on the
tensile part of dilatational stress is shown to be a good predictor of the fracture pattern. The following conclusions can be drawn based on the current work:

1. Six cases which were reported in [1] were reconstructed with the proposed failure criteria. Among the six, four cases were reproduced well and the other two A-P impact cases were also reproduced by tweaking the parameters of the failure criteria.

2. Oblique, Tensile wedge, Tensile-Compression wedge, transverse fractures are initiated by tensile failure. The different progression patterns can then be attributed to influences like plane of bending, direction of loading, impact speed, loading non-linearity etc. Comminution fracture may be caused by high speed impacts or higher stress concentration and/or stress localization.

3. In simulation, two peaks were observed in the contact force history wherein the first peak is higher than the second peak in A-P, P-A and L-M planes of impact while for the M-L plane of impact the second peak is higher than the first.

4. Bones always failed after the second peak in the contact force history.

5. The functional difference between the two experimental setups reported in [1] was investigated and it is found to be that the area of contact between the impactor and the specimen is different for the two setups. This is perhaps one of the main reasons why the impact in the A-P plane in two setups resulted in different fracture types.

6. To study the variation fracture types with angular orientation, more simulations were carried out by impacting the bone model at fixed angular interval of 22.5˚ over a full circle with an impact speed of 7.5 m/s. The transition/Boundary where one fracture type changes to another is identified.

7. Critical dilatational cut-off stress failure criteria would be a better predictor of crack progression as compared to strain based failure criteria.

ACKNOWLEDGEMENTS

The authors acknowledge the support from the Transportation Research and Injury Prevention Program (TRIPP) at Indian Institute of Technology Delhi for providing part of the infrastructure used in the work.

REFERENCES

10. Martin AVW. Electron microscope studies of collagenous fibres in bone. Biochimica et Biophysica Acta 10: 42, 1953

17. Voyiadjis GZ, Kattan PI. Damage Mechanics: Taylor & Francis Group, 2005

33. Bucholz RW, Heckman JD, Court-Brown C. Rockwood and Green’s Fractures in Adults Lippincott Williams & Wilkins

