Estimation of the effects of new emission standards on motorcycle emissions by means of modeling
- Road traffic is, in addition to the energy sector and the industry, one main source of air pollution and carbon dioxide emissions. Although most countries and manufacturers agreed to environmental regulations to reduce the pollutant emissions, particularly in urban areas with high traffic density, the impact of road traffic emissions on the environment and human health has been growing in importance steadily. Due to stricter emission standards and the binding use of emission-reducing systems (e.g. three-way catalyst) hydrocarbon emissions from passenger cars have been reduced significantly since the last two decades. Unlike to passenger cars the emissions standards of powered two-wheelers have not been adjusted since 2006 although their share of hydrocarbon emissions to the total amount of hydrocarbon emissions of road traffic is estimated to be disproportionately high. Due to the new regulation (EU) No. 168/2013 powered two-wheelers have to fulfill new emission standards from 2016 (Euro 4) and 2020 (Euro 5) onwards. Besides new limits for the tailpipe emissions the evaporative emissions are regulated separately for the first time, as they make up a high proportion to the total hydrocarbon emissions in this vehicle class. In this context, the calculation and forecast of road traffic emissions is an important tool to verify compliance of climate targets and to assess the reduction potential of emission-reducing systems. For that purpose the Federal Highway Research Institute (BASt) uses the emission- and calculation tool TREMOD (Transport Emission Model) which provides baseline data and calculated results for pollutants in almost every differentiation e.g. vehicle category, traffic situation and road type. Moreover, estimations of future emission trends, stock information and mileage distribution can be made. The main objective is to illustrate the impact of the upcoming emission standards Euro 4 and Euro 5 on the operational hydrocarbon emissions of powered two-wheelers based on statistical estimations. The significant aspect is to generate scenarios to show the reduction potential of hydrocarbon emissions of powered two-wheelers, differentiated into motorcycles and small motorcycles, in relation to the total share of hydrocarbon emissions in this vehicle class and to the total hydrocarbon emissions from road traffic. As a part of their research, the authors can make initial statements about the possible effect of the new emission standards of regulation (EU) No. 168/2013 by means of modeling with TREMOD.
Author: | Conrad Piasecki |
---|---|
Document Type: | Article |
Language: | English |
Date of Publication (online): | 2018/10/08 |
Year of first publication: | 2016 |
Release Date: | 2018/10/08 |
Tag: | Emission; Europa; Organisation; Rechenmodell Emission; Europe; Mathematical model; Organization (association) |
Comment: | Volltext frei verfügbar: http://dx.doi.org/10.1016/j.trpro.2016.05.455 |
Source: | Transportation research procedia 14 (2016), S. 3089-3098 |
Institutes: | Abteilung Fahrzeugtechnik / Abteilung Fahrzeugtechnik |
Dewey Decimal Classification: | 6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten |
collections: | BASt-Beiträge / ITRD Sachgebiete / 15 Umwelt |