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Abstract
It has been pointed that most of the accidents on the roads are caused by driver faults, inattention and low performance. Therefore,

future active safety systems are required to be aware of the driver status to be able to have preventative features. This probe study 

gives a system structure depending on multi-channel signal processing for three modules: Driver Identification, Route 

Recognition and Distraction Detection. The novelty lies in personalizing the route recognition and distraction detection systems

according to particular driver with the help of driver identification system. The driver ID system also uses multiple modalities to 

verify the identity of the driver; therefore it can be applied to future smart cars working as car-keys. All the modules are tested 

using a separate data batch from the training sets using eight drivers’ multi-channel driving signals, video and audio. The system 

was able to identify the driver with 100% accuracy using speech signals of length 30 sec or more and a frontal face image. After

identifying the driver, the maneuver/ route recognition was achieved with 100% accuracy and the distraction detection had 72% 

accuracy in worst case. In overall, system is able to identify the driver, recognize the maneuver being performed at a particular 

time and able to detect driver distraction with reasonable accuracy. 

INTRODUCTION

In order to increase the safety on the roads, current research efforts in in-vehicle systems have three main 

focus areas: in-vehicle controllers, driver assistance/monitoring systems and environmental risk 

assessment systems. Ideally, in the near future, these seemingly separate efforts are expected to come 

together under a decision making hierarchical system structure to reduce accidents caused by dynamical 

factors related to: vehicle, driver and traffic/infrastructure. The configuration of the integration of these 

sub-systems may vary from a fully automatic smart car to a semi-autonomous, driver-centered approach. 

To find the optimal solution for this problem with the least intrusion to the driver, driver behavior models 

will have crucial importance in developing driver-adaptive, context-aware active safety systems.  

Under support from an international NEDO funded consortium, UTDrive project began two years ago, 

with the formulation of a data collection vehicle, Toyota RAV4, customized with a variety of sensors and 

transducers for multi-modal data acquisition. The data include audio, video, gas/brake pedal pressures, 

following distance, CAN-Bus information and GPS information. Signals are synchronously recorded with 

the help of a commercial data acquisition unit. In the first phase of the project (P1), 100 sessions of multi-

channel driving data has been collected from a demographically wide range across 53 participants. Two 

driving routes in the neighborhood areas of Richardson, TX are chosen; the first route represents a 

residential scenario and the second represents a business-district scenario. Fundamentally, these two 

scenarios are quite different in terms of traffic density, infrastructure and attention sources required from 

the driver. Data collection from both routes includes neutral driving and driving under task distraction. For 

driving sessions with distraction, manual secondary tasks (adjusting radio, AC/heater, etc.), cognitive 

tasks (reading road signs, cell-phone dialing Airline flight speech prompted system and discussing with 

the research team member) and driving maneuvers (lane change, left/right hand turn) were requested from 

the driver. This extensive database is carefully transcribed to distinguish the time windows of interest (i.e. 

each particular maneuver, the section including the speech with Airline dialog, etc.) and log this data 

under a developed protocol. The transcribed multi-sensor data are then analyzed using different state-of-

the-art techniques in speech signal processing, such as Hidden Markov Models (HMM) and Gaussian 
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Mixture Models (GMM) for the purpose of distraction detection. The results obtained so far have led 

contributions in three book publications [1, 2, 3] compiling the papers in international workshops under 

the name of DSP for In-Vehicle Systems.  

 In this paper, the second phase (P2) of the research will be detailed. In P2, three main areas related to 

driver behavior signal processing and analysis is explored in further depth: multi-sensor driver 

identification, route recognition and reliable driver distraction detection. First, the formulated driver 

identification system is explained in detail. It utilizes video (facial features), audio (speaker-dependent 

features) and CAN-Bus cues (driving performance metrics) of the individual drivers. This system can be 

classified as a multi-modal biometric identification system aimed at recognizing the driver with the 

ultimate goal of adapting the car set points and future controllers to the characteristics of the driver for 

safe operation of the vehicle. The second system is based on a novel idea of building a route model 

formed by maneuvers and sub-maneuvers in the analogy to speech recognizers working on phonemes 

(sub-maneuvers), words (maneuvers) and sentence (route) models having a semantic/syntactic language 

model (context of driving and sequence of driving) . The third system attempts to detect the distraction of 

the drivers from the multi-sensor data stream using HMMs.  

This paper is organized in the following way: First the background on face recognition, speaker 

identification and CAN-Bus signal processing are mentioned with an emphasis on need for multi-modal 

systems for in-vehicle driver identification.  Second, data collection vehicle, experimental procedure and 

corpus are mentioned.  Next, integration of these three systems is explained in section ‘System Integration 

and Overview’ and then three modules are explained in greater detail in ‘Driver Identification’, ‘Route 

Recognition’ and ‘Distraction Detection’ sections. Finally, further work is recommended for this very 

promising in-vehicle safety system to be improved. The contribution of the study lies in combining the 

existing ideas on improving the safety using in-vehicle electronic devices in a system integration and 

mechatronics approach.  

BACKGROUND

The research area this paper addresses is interdisciplinary and builds on multi-modal biometric 

identification systems employing mainly face and speaker recognition and driver characteristics from 

CAN-Bus.  Recognizing the driver robustly despite of the adverse conditions of in-vehicle environment 

such as changing illumination and engine noise is very important in adapting the driver assistance and 

monitoring modules to driver characteristics. Here, brief background is given on face and speaker 

recognition, multi-modal bio-metric systems, route recognition and distraction detection to understand 

how these systems can be combined to increase the safety of vehicles.  

Face recognition is a mature technology in itself and has been used in commercial systems in 

authenticity and security applications. A comprehensive literature survey on face recognition algorithms 

can be found in (4). The in-vehicle application poses extra challenges for face recognition as follows: 

The illumination changes are dramatic and at significant levels  

Drivers cannot be expected to stand still for image acquisition therefore system should use 

video sequences for recognition  

Video sequences contain face images with varying scale, orientation and non-rigid motion 

Driver appearance may change over time 

Most of these issues are addressed in a probabilistic scheme in (5). They applied still-to-video and video-

to-video recognition algorithms incorporating the temporal information from the videos in a probabilistic 

framework. In this paper, our focus is not developing the most capable face recognition system for in-

vehicle application; rather we try to include face recognition cues in a multi-modal driver recognition 

system. In fact, we will be only using principal component analysis (PCA) method for now as it was 

applied in (6), since our main focus is to develop a multi-modal system for recognition with simplistic 
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modules. Incorporating more robust 3-D, temporal and probabilistic approaches for in-vehicle use 

deserves a separate investigation in its own right.  

The second modality of our system is based on speaker identification cues. For a comprehensive 

overview on speaker identification (7) is recommended. Here, most widely used MFCC will be employed 

for feature extraction and GMM will be used to assess the performance of this simplistic speaker 

identification system.  

In our system, the third modality comprises several metrics derived from CAN-Bus signals 

comprising mainly vehicle speed, steering wheel angle and brake/pedal signals. Use of multi-modal 

systems for person identification is not a complete novel idea and kinematics of gait; key stroke in typing 

and several other dynamics of motion have been used for recognition. Although CAN-Bus signals can be 

used to derive more detailed models of driving models employing control theory, here they will be taken 

as time series representing a particular motion sequence (i.e. right turn, left turn and lane change). Using 

Can-BUS information and fusion with two previously mentioned modules is an in-vehicle focused and 

novel approach to multi-modal person recognition in car driving context. There is very little study on 

CAN-Bus signal modeling, however, some promising results can be found in (8).  

CAN-Bus signals are not forming only the dynamic modality of our recognition system, but they are 

also the information source for diagnosis system comprising route recognition and distraction detection. 

We will be employing Hidden Markov Models (HMM) for modeling the maneuvers and detecting the 

distraction. There is substantial successful work on application of HMM in driver modeling (9, 10). 

Although these previous studies unleashed the potential of HMM in driver behavior modeling there is still 

need for extensive studies including larger databases and more real-world driving situations in models in a 

hierarchical approach.  

It should be also noted that multi-modal person recognition with an in-vehicle application has been 

studied before (11), however, the recognition system has not been connected to maneuver recognition and 

distraction detection modules to improve their performances. Therefore, in this paper, we are offering an 

improvement in the performance of maneuver recognition and distraction detection algorithms by 

recognizing the driver in the beginning of the driving session as well as suggesting an authorization 

system as the other researchers suggested.  

Data collection vehicle, experimental procedure and corpus 

The vehicle (Figure 1) is equipped to perform multi-modal data collection with signal channels including: 

Videos: driver cabin  and the road scene 

Microphone array and close microphone to record driver’s speech 

Distance sensor using laser to measure the distance between ego vehicle and leading vehicle 

GPS for position measurement 

CAN-Bus: vehicle speed, steering wheel angle, brake/gas 

Gas/Brake pedal pressure sensors 

These sensors allow collecting dynamic driving data and some physiological cues on driver status in a 

non-intrusive manner. Since the equipment is visible to the participant and there is an experimenter in the 

car, the collected data cannot be classified as pure naturalistic driving data; however, the routes, secondary 

sub-tasks and the scenarios are in good agreement with real driving experience.  
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Figure 1. Data collection vehicle and incorporated sensors 

The driving scenarios include two different routes: residential and commercial areas including right turn, 

left turn, lane change, cruise and car following segments.  Each route is driven by each driver twice: 

neutral and distracted. These routes can be seen in Figure 2. 

Figure 2. Route 1 (Left) and Route 2 (Right) 
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UTDrive Corpus includes 40 male 37 female drivers’ multi-sensor driving data (each person has three 

sessions repeated twice giving six sessions in total) and the experiments are in continuation to extend the 

database. It is close to naturalistic driving data since the routes and the scenarios are from real roads. 

However, it should be noted as well that it is not completely naturalistic since the driver is aware that 

he/she is being recorded and there is often nervousness due to using the data collection vehicle which is 

completely new to participants. In this investigation a narrow data base containing only three drivers will 

be examined since it reflects the real situation that a vehicle may be used by 3-4 drivers but not more. 

While this restriction makes it easy for recognition, it comes with a drawback as well: there is limited data 

or limited number of observations of a maneuver from the same person in our database. Nevertheless, 

despite this limitation with very limited data we will demonstrate that the recognition system can help 

other two diagnosis modules increase the overall performance of the safety system. Next session gives the 

overview of the system integration between multi-modal biometric driver identification, route recognition 

and distraction detection modules. 

System integration and overview 

One important concept in mechatronics approach in active safety system design is to have the system 

integration for boosting the over-all system performance simplifying the structures. Applying this 

principle we combine the multi-modal biometric driver identification system with route/maneuver 

recognition and distraction detection systems. Individual systems combined here can work; however, the 

performances of the systems decrease due to dynamics of driving and personal differences among the 

drivers. Although systems are trained on a larger database including several drivers, the user might have 

different driving characteristics which would directly affect the performances of maneuver recognition 

and distraction modules. These problems can be alleviated by employing a driver identification system 

and personalization of the system, multi-modal driver identification system authorizes the driver as well as 

loading driver-characteristic properties. The flow-diagram of the system is shown in Figure 3.  

Figure 3. System Integration and flow diagram 
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In the following sub-sections the individual module development and performances are mentioned.

Driver identification  

Face Recognition Modality 

Driver identification module uses multi-modal information from the driver: face-recognition and speaker 

identification cues are used as primary modality while they are connected with and backed up by driving 

characteristics derived from CAN-Bus. The final identification result is a fusion of decision from these 

three modalities, however; first the identification results from individual modalities are given here.  

First modality uses eigen-faces approach employing PCA. Ten images from each of three drivers (total 

30) are included for training and 5 images are used for testing. In the resulting PCA analysis first 19 

eigen-values and associated eigen-vectors are selected. Results are given for Driver 1 in Figure 4, 

indicating the reliable weights which give the shortest Euclidean distance between the weights obtained 

from the test and those obtained from test signals.  
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Figure 4. Test images weights with 19 eigen-vector subspace, reliable weights for driver I: 

2,4,5,6,7,8,11,12,16,17,18,19

Cumulative PCA results can be seen in Table I, there are two failed test images from driver which are the 

cases when driver had a slight tilt or rotation. These failures can be easily fixed with a more advanced face 

feature extraction and classification scheme. However, in this application 13 cases of 15 test images were 

correctly classified, which is satisfactory performance for only one modality. The failures can be corrected 

by other modalities easily without applying a more advanced method on this modality. 
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Table I. Cumulative PCA results for face recognition module using 3 driver-database 

Driver 1 Test image 1 
(ground truth: 1) 

Driver 2 Test image 1 
(ground truth: 2) 

Driver 3 Test image 1 
(ground truth: 3) 

Class 1 1.308 Class 1 2.8714 Class 1 3.9308

Class 2 4.0576 Class 2 0.8057 Class 2 4.5672

Class3 4.2706 Class3 4.7348 Class3 0.524

Class4 5.969 OK Class4 4.4371 OK Class4 4.9626 OK

Driver 1 Test image 2 
(ground truth: 1) 

Driver 2 Test image 2 
(ground truth: 2) 

Driver 3 Test image 2 
(ground truth: 3) 

Class 1 1.309 Class 1 3.1135 Class 1 2.3383

Class 2 3.9824 Class 2 0.778 Class 2 3.8475

Class3 4.2566 Class3 4.4914 Class3 2.1232

Class4 5.9447 OK Class4 4.3241 OK Class4 5.2668 OK

Driver 1 Test image 3 
(ground truth: 1) 

Driver 2 Test image 3 
(ground truth: 2) 

Driver 3 Test image 3 
(ground truth: 3) 

Class 1 1.2337 Class 1 3.0956 Class 1 2.2045

Class 2 4.0102 Class 2 1.2475 Class 2 3.7372

Class3 4.3019 Class3 4.4251 Class3 2.3235

Class4 5.9428 OK Class4 4.0836 OK Class4 5.1811 fails

Driver 1 Test image 4 
(ground truth: 1) 

Driver 2 Test image 4 
(ground truth: 2) 

Driver 3 Test image 4 
(ground truth: 3) 

Class 1 1.1886 Class 1 3.2933 Class 1 2.2606

Class 2 3.9427 Class 2 1.4564 Class 2 3.7417

Class3 4.2865 Class3 4.9023 Class3 2.2739

Class4 5.9099 OK Class4 4.2657 OK Class4 5.0772 fails

Driver 1 Test image 5 
(ground truth: 1) 

Driver 2 Test image 5 
(ground truth: 2) 

Driver 3 Test image 5 
(ground truth: 3) 

Class 1 1.2915 Class 1 3.4055 Class 1 2.3884

Class 2 3.8257 Class 2 1.5501 Class 2 3.8041

Class3 4.2282 Class3 4.8726 Class3 2.1363

Class4 5.8824 OK Class4 3.8343 OK Class4 4.9167 OK

Speaker Recognition Modality

For developing the speaker recognition module, 8 drivers’ speech signals are included in training and 

testing. The Speaker/driver recognition system consists of three main blocks namely feature extraction, 

universal background model generation and the speaker/driver dependent model adaptation apart from 

testing. Feature extraction is front-end processing were distinguishable features of the speech signal are 

extracted and stored in a feature vector. Mel-frequency cepstral coefficients are very widely used features 

in speaker recognition domain. We used 19 dimension MFCC feature vectors. The universal background 

model (UBM) is trained using a large number of drivers' speech data (over 20 hrs of speech data) 

preferably other than the train and test set of drivers. The driver dependent Gaussian mixture (GMM) 

model is obtained by MAP adapting the UBM using driver specific feature vector files. An average of 

around 8 mins worth of speech data is used per driver to MAP adapt the UBM to train the driver 

dependent GMM. The driver dependent model will then contain only the distribution of a particular 

driver's speech. 3-6 mins of every driver's speech data (feature vector files) is used for testing. The data is 

windowed into various lengths for testing to know the best performance of the system with minimal data. 

Using the log-likelihood scoring these speech signals are scored against all GMM models and UBM. The 
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highest scores in each row in Table II give the classification result. As can be seen from Table II for full 

length of test data, the highlighted scores represent the highest scores for the drivers giving a correct 

classification rate of 100%.  

The experiments were repeated for variable length of test data to obtain the minimum length of test 

utterance required to recognize the driver. Models were scored with 2 min, 1 min, 30sec, 10 sec, 5sec and 

2 sec data. The drivers could be recognized using the speech signal with 100% accuracy for 30 sec or 

longer data lengths. Reducing the test data further to 10 sec, 5 sec and 2 sec length information leads the 

worst case accuracy dropping to 91%, 86% and 68% respectively. From these results we can draw the 

conclusion that 30secs of speech data is enough to recognize the driver with very good accuracy.  

Table II. Speaker ID recognition test scores using full-length signals (3-6 mins) 

FULL MODELS

M1 M2 M6 M8 M10 M11 M17 M18 UBM

1 -110.646 -128.013 -151.448 -131.678 -134.252 -138.781 -123.783 -128.72 -133.702

2 -109.907 -96.3208 -131.896 -114.587 -114.537 -104.037 -110.249 -112.455 -108.181

6 -148.673 -151.674 -109.55 -130.734 -146.519 -151.21 -145.097 -143.381 -140.103

8 -121.752 -119.508 -115.728 -103.815 -112.888 -118.85 -113.64 -112.24 -115.213

10 -161.914 -156.105 -166.587 -154.393 -124.645 -151.392 -155.965 -143.089 -149.036

11 -174.27 -154.657 -196.47 -180.338 -167.637 -128.519 -173.834 -167.165 -161.067

17 -136.965 -139.704 -158.256 -144.038 -140.699 -141.398 -120.451 -134.858 -139.078

LLR score 
for
raw 

spkr/driver 
files

18 -194.236 -197.659 -196.553 -181.062 -182.105 -192.124 -192.782 -155.483 -186.165

CAN-Bus Based Driver Identification 

Different from face recognition module, CAN-Bus includes time-varying characteristics of the driver 

therefore can be considered as less reliable. However, this modality is crucial for finding the nominal 

behavior of the particular driver and using this baseline to detect the distractions. Here, HMMs are used to 

model drivers right turn maneuvers. For each driver, a separate HMM is trained using only RT signals 

collected from that driver, however, the resultant HMMs are tested with RT maneuvers from all the 

drivers. The maximum log-likelihood of the results are found and correspondent HMM is tracked back to 

find out the identity of the driver. The cumulative results of this procedure are given in Table III. 

Table III. Driver Identification Correct Classification Rates using HMMs trained by only CAN-

Bus signals 
Driver 1 HMMs Driver 2 HMMs Driver 3 HMMs 

Driver 1 RT test signals -- 83 % 69 % 

Driver 2 RT test signals 30 % -- 22.2 % 

Driver 3 RT test signals 89 % 100 % --

The results from Table III should be interpreted carefully. For example when HMMs  for Driver 1 are 

tested using Driver 2’s signals only 30% of the cases were correctly identified as ‘different from Driver 1’, 

so the rejection rate was very low. On the other hand, when the same models are tested with Driver 3’s 

signals 89% of them were correctly rejected. From this table we can see the best performance is observed 

when Driver 2 HMMs are tested with Driver 3 signals; 100% of them were rejected. This result is showing 
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that drivers might have different characteristics and this can be modeled stochastically, however, they are 

not necessarily distinguishable in all cases. This makes CAN-Bus based module weaker than vision and 

audio biometrics. However, as can be seen in route maneuver recognition and distraction sections, the 

stochastic driver models can be used in those areas with better performance.  

Fusion of Audio-Visual-CAN Bus Modalities 

The fusion of the modalities can be achieved at different stages. One option is to include the feature 

vectors from all modalities as a single combined feature vector for that driver and then apply a 

classification algorithm for identification. The other more common way is to have the modalities 

completely separate and combine the classification results by using weight factors and belief networks. 

This process requires careful selection of the weights to have the leverage in overall performance of the 

identification system. From the individual performances of the modalities, we can say that face 

recognition and speaker ID systems are the best ones. Since we were not able to have satisfactory 

classification results from CAN-Bus modality, it is not included in the identification part. 

Route/ Maneuver recognition 

In order to develop the maneuver recognition system we use the same HMMs trained for each driver 

individually and test them with different type of maneuvers (lane change (LC) in this investigation). We 

observed that for Driver 1 and 3 a 100% correct classification was possible whereas for Driver 2 the 

HMM was not able to distinguish between the maneuvers. The results can be seen in Table IV; when the 

lane change maneuvers are used to test right turn HMMs, the likelihoods decreased which means system 

was able to reject lane changes to be classified as right turns. We demonstrate only this example between 

two maneuvers; however, a more extensive analysis is necessary to include more maneuvers here.  

Table IV. Maneuver Recognition Sample Results for Driver 1 and 3 

Driver 1 (LC maneuvers used to test RT HMMs) Driver 3 (LC maneuvers used to test RT HMMs) 

-34665.8673 -35331.38023 

-34834.2951 -35662.83673 

-34831.945 -35524.56934 

-35032.99553 -35753.50861 

-34693.09733 -35433.78337 

-34987.87301 -35589.16114 

-22846.8283 -22633.07504 -22591.839 

-22888.5122 -22603.62654 -22603.627 

-22884.9639 -22601.89573 -22601.896 

-22953.3498 -22646.22121 -22646.221 

-22919.6953 -22570.17769 -22570.178 

-23033.2274 -22633.07504 -22633.075 

RT ground truth: -33396.7252, 100% recognition,   RT ground truth: -21513.2232, 100% recognition 

Distraction detection 

As the maneuver recognition system, distraction detection uses the HMMs trained by neutral RT signals. 

Distracted RT maneuver signals (21 of them) are used to test these HMMs to see if they are able to 

distinguish between the neutral and distracted signals. The cumulative results are 72%, 100% and 83% 

correct classification of distracted signals for three drivers.  
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CONCLUSIONS and DISCUSSION 

This probe study uses a database of eight drivers’ audio, video and CAN-Bus signals to develop a 

preliminary driver identification and monitoring system emphasizing the need to make any driver 

assistance/ monitoring system driver-adaptive. Video and audio modalities are used to identify the drivers 

and the individual-specific HMMs are used to recognize the maneuver and detect the distraction of the 

driver. It is strongly believed that by using individual-based HMMs, the models of the driing behaviour 

can be more reliable and accurate.  

Driver identification part can be used as verification if the smart keys are deployed for security purposes. 

Identification module is highly static in this sense, however, route recognition and distraction detection 

monitors the driver dynamically during the driving session and can help to reduce the accidents if it can be 

connected to preventive active safety systems or warning systems.  
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