Optimierung der Zusammensetzung Offenporiger Asphalte zur Verbesserung des Nutzungsverhaltens

Berichte der Bundesanstalt für Straßenwesen

Straßenbau Heft S 189

Optimierung der Zusammensetzung Offenporiger Asphalte zur Verbesserung des Nutzungsverhaltens

von

Martin Radenberg Daniela Breddemann

Ruhr-Universität Bochum

Berichte der Bundesanstalt für Straßenwesen

Straßenbau Heft S 189

Die Bundesanstalt für Straßenwesen veröffentlicht ihre Arbeits- und Forschungsergebnisse in der Schriftenreihe **Berichte der Bundesanstalt für Straßenwesen.** Die Reihe besteht aus folgenden Unterreihen:

- A Allgemeines
- B Brücken- und Ingenieurbau
- F Fahrzeugtechnik
- M Mensch und Sicherheit
- S Straßenbau
- V Verkehrstechnik

Es wird darauf hingewiesen, dass die unter dem Namen der Verfasser veröffentlichten Berichte nicht in jedem Fall die Ansicht des Herausgebers wiedergeben.

Nachdruck und photomechanische Wiedergabe, auch auszugsweise, nur mit Genehmigung der Bundesanstalt für Straßenwesen, Stabsstelle Presse und Kommunikation.

Die Hefte der Schriftenreihe **Berichte der Bundesanstalt für Straßenwesen** können direkt bei der Carl Ed. Schünemann KG, Zweite Schlachtpforte 7, D-28195 Bremen, Telefon: (04 21) 3 69 03 - 53, bezogen werden.

Über die Forschungsergebnisse und ihre Veröffentlichungen wird in der Regel in Kurzform im Informationsdienst **Forschung kompakt** berichtet. Dieser Dienst wird kostenlos angeboten; Interessenten wenden sich bitte an die Bundesanstalt für Straßenwesen, Stabsstelle Presse und Kommunikation.

Die Berichte der Bundesanstalt für Straßenwesen (BASt) stehen zum Teil als kostenfreier Download im elektronischen BASt-Archiv ELBA zur Verfügung. https://bast.opus.hbz-nrw.de

Impressum

Bericht zum Forschungsprojekt 07.0274 Optimierung der Zusammensetzung Offenporiger Asphalte zur Verbesserung des Nutzungsverhaltens

Fachbetreuung Oliver Ripke

Referat Asphaltbauweisen

Herausgeber Bundesanstalt für Straßenwesen Brüderstraße 53, D-51427 Bergisch Gladbach Telefon: (0 22 04) 43 - 0

Redaktion Stabsstelle Presse und Kommunikation

Druck und Verlag Fachverlag NW in der Carl Ed. Schünemann KG Zweite Schlachtpforte 7, D-28195 Bremen Telefon: (04 21) 3 69 03 - 53 Telefax: (04 21) 3 69 03 - 48 www.schuenemann-verlag.de

ISSN 0943-9323 ISBN 978-3-95606-744-0

Bergisch Gladbach, Mai 2023

Kurzfassung – Abstract

Optimierung der Zusammensetzung Offenporiger Asphalte zur Verbesserung des Nutzungsverhaltens

Das Ziel dieses Forschungsvorhabens war die Verbesserung des Nutzungsverhaltens Offenporiger Asphalte durch eine gezielte Optimierung der Zusammensetzung. Dazu wurde systematisch der Einfluss der Mischgutzusammensetzung in Hinblick auf das Alterungsverhalten Offenporiger Asphaltdeckschichten untersucht. Die Mischgutzusammensetzung wurde anhand von Kornform, Kornanteilen der einzelnen Kornklassen sowie Mastixzusammensetzung variiert.

Die Bewertung der akustischen Eigenschaften der verschiedenen PA-Varianten wurde anhand des Strömungswiderstandes und des Schallabsorptionsgrades überprüft. Zudem wurden ausgewählte PA-Varianten bezüglich der zu erwartenden bautechnischen Dauerhaftigkeit überprüft.

40 Sieblinienvarianten wurden theoretisch aus den Lieferkörnungen abgeleitet und mittels computerbasierter Modellberechnung der zu erwartende Hohlraumgehalt der PA-Varianten ermittelt. Das Ergebnis der computerbasierten Modellberechnung zeigt, dass diese noch keine zielsichere Vorhersage des experimentell ermittelten Hohlraumgehaltes ermöglicht. Durch die Variation der Sieblinie konnten große Unterschiede der akustischen Eigenschaften der PA-Varianten nachgewiesen werden, wohingegen ein eindeutiger Einfluss auf den Kornverlust PL nicht festgestellt werden konnte.

Die Variation der Kornform hatte in dem hier geprüften Rahmen keinen eindeutigen Einfluss auf den Hohlraumgehalt und auf die akustischen Eigenschaften der PA-Varianten.

Die Variation der Mastixkomponente zeigte deutliche Einflüsse auf den Hohlraumgehalt, den Schallabsorptionsgrad und auf den Kornverlust PL.

Die Ergebnisse und die Differenzierbarkeit der Oberflächenverschleißprüfung vor und nach Alterung sollten kritisch hinterfragt werden.

Insgesamt konnten durch die Ergebnisse der Untersuchungen Optimierungspotentiale aufgezeigt werden. Durch gezielte Variation der Sieblinie und der Mastixzusammensetzung können die akustischen Eigenschaften und die Nutzungsdauer Offenporiger Asphalte verbessert werden.

Optimisation of the composition of porous asphalts to improve their use behaviour

The aim of this research project was the improvement of the usage behaviour of porous asphalts (PA) by a targeted optimisation of the composition. For this purpose, the influence of the mixed material composition on the ageing behaviour of porous asphalt layer was systematically investigated. The mixture composition was varied on the basis of grain shape, grain proportions of the individual grain classes and mastic composition.

The evaluation of the acoustic properties of the different PA variants was examined on the basis of the flow resistance and the sound absorption coefficient. In addition, selected PA variants were tested with regard to the expected structural durability.

40 grading curve variants were theoretically derived from the supplied grains and the expected void content of the PA variants was determined by computer-based model calculation. The result of the computer-based model calculation shows that it does not yet allow a reliable prediction of the experimentally determined void content. By varying the grading curve, large differences in the acoustic properties of the PA variants could be detected, whereas a clear influence on the grain loss PL could not be determined.

The variation of the grain shape had no unequivocal influence on the void content and on the acoustic properties of the PA variants in the framework examined here.

The variation of the mastic component showed clear influences on the void content, the sound absorption coefficient and on the grain loss PL.

The results and the differentiability of the scuffing test before and after ageing should be critically questioned.

All in all, the results of the investigations showed that there was potential for optimisation. Through targeted variation of the grading curve and the mastic composition, the acoustic properties and service life of porous asphalts can be improved.

Summary

Optimisation of the composition of porous asphalts to improve their use behaviour

1 Introduction and problem description

Surface courses of porous asphalt (PA) are characterised by their open-pore structure with a large number of accessible cavities. These can absorb sound and reduce the aerodynamic processes involved in tyre-road noise. Furthermore, the large number of accessible voids leads to a reduction in spray plumes and a good drainage effect in wet conditions.

However, the open-pored structure also offers a large surface area for water and oxygen to penetrate, which influences the ageing of the bitumen in the porous asphalt. Compared to conventional asphalt surface courses, the service life of PA is reduced and averages eight to ten years. The service life is mainly limited by raveling.

Compliance with the tight material specifications, such as the grain size distribution, in conjunction with the testing problems of the void content determination often lead to construction contract discussions.

The influence of the production of test specimens on the void content determined in research work makes it difficult to sensibly optimise the acoustic and structural properties of porous asphalt layers.

2 Objective

The aim of this research project is the improvement of the usage behaviour of porous asphalts by a targeted optimization of the composition. For this purpose, the influence of the mix composition on the ageing behaviour of porous asphalt layers will be systematically investigated. The mixed material composition will be varied according to grain shape, grain proportions of the individual grain classes and mastic composition.

Initial findings on the selection of suitable mixed material variants are determined using a computerbased model calculation. Rheological binder and mastic investigations form the basis for the evaluation and selection of binders and mastic variants.

The evaluation of the acoustic properties of the different PA variants is checked on the basis of the flow resistance and the sound absorption coefficient. In addition, selected PA variants are tested with regard to the expected structural durability.

3 Investigation method

The investigation programme carried out can be divided into three sections.

In the first section, preliminary investigations were carried out to characterise the material components and the possible mixture composition. The materialspecific and rheological properties of the binders were determined by needle penetration, softening point ring and ball, flexural creep stiffness and dynamic shear rheometer in the fresh state, after short-term ageing and after combined short-term and long-term ageing. Six higher-modified polymermodified bitumens (PmB), two ready-to-use rubbermodified bitumens (RmB R) and one rubber-modified bitumen with rubber-modified bitumen granules (RmBG) were investigated. The dynamic shear rheometer was also used to investigate the rheological properties of 20 different types of mastic. The composition of these varied due to different combinations of binder, filler, lime hydrate, binder carrier and their respective additive proportions.

The delivery grains of the selected basic and acid rock (diabase and granite) were examined for their grain shape. 40 grading curve variants were derived from the supplied grains and developed a volume model by means of computer-based calculation, which estimates the expected void contents of the open-pored asphalt.

In the second section, the material composition was optimized on the basis of three test series. The first series of investigations served to limit the grading curves. Ten different aggregate variations were produced in combination with a reference mastic and tested in the laboratory. In the second series, the influence of grain shape was investigated. For this purpose, specific changes to the grain shape were made to the previously determined aggregate variants. The third series of investigations served to examine the influence of mastic on the void conditions in porous asphalt. For this purpose, the optimal aggregates variants determined in the second series of investigations were considered with different mastic variants.

In addition to the void content, the sound absorption coefficient and the flow resistance served as evaluation criteria for the three test series. In addition, the results of the grain loss of the Marshall-specimens (MPK) were taken into account.

In the third section of the investigation programme, a realistic simulation of the laytime was carried out on the previously optimised material compositions and the durability was tested. Laboratory compacted asphalt spacimens were aged using the Bochum Ageing Method (BAV) and then subjected to freeze de-icing salt stress. On these asphalt specimens exposed to such stress, the usage behaviour was determined on the basis of a surface wear test (OVP). In addition, the flow resistance and the sound absorption coefficient were determined to assess the optimised material composition. Finally, computer tomographic investigations were carried out to determine the proportion of communicating voids.

4 Results and analysis

4.1 Preliminary investigation

The void contents determined by means of computer-based model calculation (Fig. 1) seemed too imprecise as the sole evaluation characteristic for the selection of 20 grading curve variants. Therefore, the void contents of all 40 grading curve variants were additionally determined at MPK. The final selection of the 20 grading curves was made on the basis of both void content determinations.

Fig. 1: simulated rock distribution in the unit cube

4.2 Optimisation of the material composition

Investigation series 1

Ten grading curve variants with a maximum grain size of 8 mm and ten grading curve variants with a maximum grain size of 11 mm were realized with the reference mastic. The results of the void content determination show that the void contents of different asphalt specimens of the same asphalt mix show significant differences, which makes comparability more difficult (Fig. 2).

Fig. 2: void contents of various PA8 specimens

Only a few variants could show good acoustic properties, classified by sound absorption coefficient and flow resistance. A dependence on the void content could not be determined. A very good variant was selected for each maximum grain size, at least one variant with 5.0 M.-% sand content and a variant with great optimisation potential for the second test series.

The grain losses PL of the MPK of both maximum grain size variants were well below 10 M.-% and thus in a very good range.

Investigation series 2

The influence of the grain shape on the void content was investigated on four grading curve variants per maximum grain size. Three grain shapes (FI 0, 10 and 20) were realized for each variant.

An influence of the grain shape on the void content could not be determined. Nor was there any clear influence of the grain shape on the grain loss PL of the MPK. With the exception of one variant, this was less than 10 M.-%.

Significantly more variants could exhibit good acoustic properties, whereby the variance of the

PA11 variants was significantly smaller and in the better acoustic range (Fig. 3).

For the third investigation series, an avoidable practical grading curve variant without sand content was selected. The PA8 variant was implemented with the grain shape FI 10 and the PA11 variant with the grain shape FI 20.

Fig. 3: Relationship between airflow resistance and sound absorption coefficient PA11 (Series 2)

Investigation series 3

Since PA8 variants are more frequently used in practice, the PA8 sieve curve variant was realised with 16 different mastic variants and the selected PA11 variant only with four different mastic variants.

The variation of the mastic has only a small influence on the void content, whereas the influence on the grain loss PL is significant. The variants with rubber-modified bitumen show greater grain losses (> 10 M.-%) than the variants with polymer-modified bitumen (< 10 M.-%). The mastic variants with a mixed filler tended to lead to slightly higher grain losses.

In the PA8 variants, a useful correlation between grain loss and rheological mastic properties was found (Fig. 4).

Fig. 4: Relationship between grain loss PL and phase angle of the mastic at T = 20 $^{\circ}$ C

While only some of the PA8 variants had good acoustic properties, all PA11 variants were able to reach the acoustically good range.

For the selection of the binding agents for the final asphalt tests, the results of the previous test series and the preliminary tests were taken into account. A polymer-modified and a rubber-modified bitumen were selected on the basis of an evaluation matrix.

4.3 Final asphalt tests

Three aggregate variants with a maximum grain size of 8 mm and one aggregate variant with a maximum grain size of 11 mm were used. These were each realized with one PmB and one RmB G.

Acoustic properties

The RmB G tends to achieve slightly higher void contents, but the use of this binder leads to significantly higher grain losses. The variants with a RmB G have grain losses of > 10 M.-%, while the variants with a PmB showed grain losses of < 10 M.-%.

The composition of the aggregates showed no clear influence on the sound absorption coefficient. The sound absorption coefficients of all variants are in the good to very good range. Despite the small sample size, a correlation between flow resistance and void content was discernible (Fig. 5). Better flow resistances were achieved with increasing void content. However, only the two PA11 variants were able to reach the good acoustic range.

Fig. 5: airflow resistance of the various PA variants

When determining the void contents of the CT scans, the internal part of the drill cores (Ø 43.35 mm, height 43.35 mm) was taken into account, thus eliminating the influence of texture. The calculated void contents of the CT scans deviate slightly from the void contents determined by measurement on the drill core, with a standard deviation of 0.85 Vol.-%, good agreement was nevertheless achieved. Due to the 2D representation of the 3D void structure, the communicating voids are not well visualisable (Figure 6).

Fig. 6: 3D void structure of an asphalt specimen

Usage behaviour

The usage behaviour of the eight PA variants was tested using the Darmstadt Scuffing Device (DSD). For this purpose, two laboratory compacted asphalt specimens were aged with BAV for each variant and then a freeze de-icing salt stress was applied to the test plates. These test plates and two unaged and stressed test plates were tested for their resistance to scuffing. With the exception of one variant, lower weight losses were measured after conditioning (Fig. 7). The conditioning of the test plates thus results in a higher resistance to surface wear, which was not expected.

Fig. 7: Absolute mass losses according to OVP of the PA8 variants

Despite the different load types, a correlation between the mass loss after OPV and the grain loss PL of the MPK could be established (Figure 8).

The results and the differentiability of the surface wear test before and after ageing should be critically questioned. The simulation of the mechanical stress with the surface wear test does not seem to be a target-oriented test method for a porous asphalt on motorways. Therefore, alternatives should be sought that better reflect the conditions of use. Regardless of this, the results of the investigations provide some indications for improving usage behaviour, which should be tested in practice as part of a test track.

Fig. 8: Correlation between grain loss according to TP and grain loss according to OVP

5 Conclusion and outlook

The results of the computer-based model calculation showed that it does not yet permit a reliable prediction of the experimentally determined void content. However, it cannot be ruled out that the inaccuracies of the reference value (void content of the asphalt specimen) are one of the causes. In order to solve this problem, the method for determining the voids content of porous asphalts should be optimised. Possible optimization parameters are the type of compaction, the layer thickness, the sample diameter, as well as the cut and partially cut areas.

By varying the grading curve, large differences in the acoustic properties of the PA variants could be demonstrated. A clear influence of the grading curve variation on the grain loss PL could not be determined.

The variation of the grain shape had no clear influence on the void content and the acoustic properties of the PA variants in the framework examined here.

Mastic rheology is an important optimization parameter. Excessive mastic stiffness leads to higher grain losses. It would make sense to take ageing processes into consideration. The results of this series of investigations indicate that a good mastic rheology is present in virgin condition when the complex shear modulus is < 8.0 MPa and the phase angle < 46° .

An influence of the binder volume on the void content can be seen. Even slight changes in the binder volume influence the void content.

Inhalt

1	Einleitung und Problemstellung	11
2	Zielsetzung	11
3	Theoretische Grundlagen	12
3.1	Offenporiger Asphalt	12
3.2	Akustische Eigenschaften Offenporiger Asphaltdeckschichten	12
4	Untersuchungsmaterialien	13
4.1	Internationale Literaturrecherche	13
4.2	Marktrecherche	13
4.3	Erkenntnisse aus dem FE 07.0222/2007 ARB	/ 14
4.4	Auswahl der Untersuchungsmaterialien .	15
5	Beschreibung des Untersuchungs- programms	15
5.1	Voruntersuchungen	15
5.2	Optimierung der Material- zusammensetzung	17
5.3	Abschließende Asphaltuntersuchungen	18
6	Ergebnisse und Auswertung	21
6.1	Voruntersuchungen	21
6.1.1	Bindemitteluntersuchungen	21
6.1.2	Gesteinseigenschaften	23
6.1.3	Herstellung der Mastixvarianten	25
6.1.4	Computerbasierte Modellberechnung	28
6.1.5	Oberflächenverschleißprüfung	29
6.2	Optimierung der Material- zusammensetzung	31
6.2.1	Untersuchungsserie 1	31
6.2.2	Untersuchungsserie 2	39
6.2.3	Untersuchungsserie 3	44
6.3	Abschließende Asphaltuntersuchungen	50

7	Zusammenfassung und Ausblick	60
Literat	tur	67
Bilder		69
Tabell	en	72
Anhan	ng	75

1 Einleitung und Problemstellung

Deckschichten aus Offenporigem Asphalt (Porous Asphalt, PA) zeichnen sich besonders durch ihre offenporige Struktur mit einer Vielzahl von zugänglichen Hohlräumen aus. Durch diese kann der Schall absorbiert sowie die aerodynamischen Vorgänge bei Reifen-Fahrbahn-Geräuschen verringert werden. Aus diesem Grund eignen sich Offenporige Asphaltdeckschichten als aktive Lärmschutzmaßnahme auf stark befahrenen Straßenabschnitten. Die große Anzahl an Hohlräumen führt zudem zu einer Reduzierung der Sprühfahnen und guter Drainagewirkung, sodass die lärmmindernde Wirkung Offenporiger Asphalte auch bei Nässe überwiegend anhält.

Die offenporige Struktur bietet jedoch auch eine große Angriffsfläche für eindringendes Wasser und Sauerstoff, wodurch die Alterung des Bitumens im Offenporigen Asphalt beeinflusst wird. Gegenüber konventionellen Asphaltdeckschichten ist die Nutzungsdauer von PA reduziert und beträgt im Mittel acht bis zehn Jahre. Die Nutzungsdauer wird dabei überwiegend durch Kornausbrüche begrenzt. Eine labortechnische Prüfung zur Prognose der Dauerhaftigkeit könnte mit Hilfe der Oberflächenverschleißprüfung bei entsprechender Laboralterung erfolgen.

Bei der Herstellung von Schichten aus Offenporigem Asphalt können immer wieder Probleme bei der Einhaltung der bauvertraglichen Anforderungen auftreten. Das Bestreben einer möglichst hohlraumreichen Struktur führte beispielsweise zu immer engeren Begrenzungen der Korngrößenverteilung (KGV). Die Einhaltung dieser engen Materialvorgaben in Verbindung mit den prüftechnischen Problemen der Hohlraumgehaltbestimmung führen häufig zu bauvertraglichen Diskussionen.

In Forschungsarbeiten wurde ein Einfluss der Probekörperherstellung auf den Hohlraumgehalt festgestellt. So weisen Marshall-Probekörper (MPK) und Bohrkerne aus mit dem Walzsektor-Verdichtungsgerät hergestellten Asphalt-Probeplatten unterschiedliche Hohlraumgehalte auf. Um im Laboratorium eine zu in situ-Messungen vergleichbare Untersuchungsgrundlage zu erzielen, werden auch schalltechnische Untersuchungen an Bohrkernen empfohlen. Diese Bedingungen erschweren eine sinnvolle Optimierung der schalltechnischen und der bautechnischen Eigenschaften.

2 Zielsetzung

Das Ziel dieses Forschungsvorhabens ist ein verbessertes Nutzungsverhalten Offenporiger Asphalte durch eine gezielte Optimierung der Zusammensetzung.

Dazu soll systematisch der Einfluss der Mischgutzusammensetzung in Hinblick auf die Dauerhaftigkeit Offenporiger Asphaltdeckschichten untersucht werden. Die Mischgutzusammensetzung wird anhand der Kornform, Kornanteilen in einzelnen Kornklassen, sowie der Mastixzusammensetzung variiert. Dabei können Korngrößenverteilung und Kornform auch außerhalb der TL Asphalt-StB liegen.

Erste Erkenntnisse zur Auswahl geeigneter Mischgutvarianten werden mit einer computerbasierten Modellberechnung ermittelt. Rheologische Bindemittel- und Mastixuntersuchungen bilden die Grundlage zur Bewertung und Auswahl der Bindemittel sowie der Mastixvarianten.

Die Bewertung der akustischen Eigenschaften der verschiedenen PA-Varianten wird anhand des Strömungswiderstandes und des Schallabsorptionsgrades überprüft. Mittels computertomografischer Messungen werden die Anteile an zugänglichen Hohlräumen exemplarisch ermittelt.

Zudem werden ausgewählte PA-Varianten bezüglich der zu erwartenden bautechnischen Dauerhaftigkeit überprüft.

3 Theoretische Grundlagen

3.1 Offenporiger Asphalt

Offenporige Asphalte werden in Deutschland seit mehr als 35 Jahren auf öffentlichen Straßen eingesetzt. Zunächst als Asphaltbeton 0/16 mit einem Hohlraumgehalt von min. 15 Vol.-% und vordergründig zur Minderung der Aquaplaning-Gefahr. [NEUMANN, ROGGENBUCK, 1978]

Jedoch seit mehr als 30 Jahren ist auch der Begriff "lärmmindernde Straßendecken" gebräuchlich. Offenporige Asphalte der ersten Generation besaßen einen Hohlraumgehalt von 15 bis 18 Vol.-%. [ALBER, 2013]

Um eine höhere Lärmminderung zu erzielen, wurde der Hohlraumgehalt seit dem weiter erhöht. Nach den [TL Asphalt-StB, 2007/2013] wird mittlerweile für PA 8 und PA 11 ein Hohlraumgehalt von 24 bis 28 Vol.-% am Marshall-Probekörper (MPK) gefordert. Diese und weitere Anforderungen sind der Tab. 1 zu entnehmen. Nach den [ZTV Asphalt-StB, 2007/2013] und dem [M OPA, 2013] soll der Hohlraumgehalt für eine Schicht aus PA 8 und PA 11 zwischen 22 bis 28 Vol.-% liegen.

Der hohe Hohlraumgehalt führt bei Offenporigen Asphaltdeckschichten vor allem in den oberen Bereichen zu einer schnelleren Alterung des Bitumens. Hierdurch werden die Mörtelverbindungen zwischen dem Gestein zunehmend spröder, wodurch Kornausbrüche entstehen können. [THE, 2016]

Wettereinflüsse wirken sich durch den hohen Hohlraumgehalt ebenso negativ auf den offenporigen Asphalt aus. So kann durch eindringendes Wasser ein Adhäsionsverlust zwischen Bitumen und Gestein hervorgerufen werden, der Kornverluste begünstigt. [JELLEMA, 2016]

Neben der bautechnischen Nutzungsdauer ist bei Offenporigen Asphalten auch die akustische Wirksamkeit von Bedeutung. Diese wird durch die Einlagerung von Schmutzpartikeln in den Porenräumen beeinflusst, sodass die erhoffte Lärmminderung nicht mehr erzielt werden kann. [ARBTER, 2014]

Laut [BASt, 2009] ist bei einem PA 8 von einer akustischen Nutzungsdauer von acht Jahren auszugehen. Dies ist seit 2009 durch das den [RLS 90, 1992] vorgelagerte ARS 3/09 verankert.

Bezeichnung	Einheit	PA 11	PA 8
Baustoffe Gesteinskörungen (Lieferkörnung)			
Anteil gebrochener Kornoberflächen Widerstand gegen Zertrümmerung Widerstand gegen Polieren		C _{100/0} SZ ₁₈ /LA ₂₀ PSV _{angege- ben(54)}	C _{100/0} SZ ₁₈ /LA ₂₀ PSV _{angege-} ben(54)
Bindemittel, Art und Sorte Zusammensetzung Asphaltmischgut Gesteinskörnungs- gemisch		40/100-65	40/100-65
Siebdurchgang bei			
22,4 mm	M%		
16 mm	M%	100	
11,2 mm	M%	90 bis 100	100
8 mm	M%	5 bis 15	90 bis 100
5,6 mm	M%		5 bis 15
2 mm	M%	5 bis 10	5 bis 10
0,063 mm	M%	3 bis 5	3 bis 5
Mindest-Bindemit- telgehalt		B _{min 6,0}	B _{min 6,5}
Bindemittelträger	M%	≥ 0,4	≥ 0,5
Asphaltmischgut Minimaler Hohlraum- gehalt MPK Maximaler Hohlraum-		V _{min 24} V _{max 28}	V _{min 24}
nehalt MPK		- 111dX 20	- 111dX 20

Tab. 1: Anforderungen an Offenporige Asphalte [TL Asphalt-StB,2007/2013]

3.2 Akustische Eigenschaften Offenporiger Asphaltdeckschichten

Die lärmmindernde Wirkung Offenporiger Asphalte beruht auf deren hohen Anteil an zugänglichen Hohlräumen. Die offene Struktur ermöglicht ein Absorbieren des Schalls, der durch das Reifen-Fahrbahn-Geräusch entsteht. Eine Schallabsorption durch eine Asphaltdeckschicht ist nach [H SO, Entwurf, 2015] erst durch eine Hohlraumstruktur von mindestens 10 Vol.-% möglich. Je größer der vorhandene Hohlraumanteil, desto höher der Schallabsorptionsgrad. Dieser lässt sich nach [DIN EN ISO 10534-1, 2001] bestimmen und ist das Verhältnis der absorbierten Schallintensität zur gesamten Schallintensität. Der Schallabsorptionsgrad ist abhängig von der Frequenz und dem Verschmutzungsgrad der Asphaltdeckschichten. [H SO, Entwurf, 2015]

Der Frequenzverlauf wird beeinflusst von bautechnischen und schalltechnischen Merkmalen, wie in Bild 1 zu erkennen ist. [M OPA, 2013]

Bild 1: Einfluss bautechnischer und schalltechnischer Merkmale auf den Schallabsorptionsgrad [M OPA, 2013]

Um eine möglichst günstige schallmindernde Wirkung des Offenporigen Asphaltes zu erzielen, sollte das Maximum des Schallabsorptionsgrades im selben Frequenzbereich liegen wie das Maximum des Verkehrsgeräusches (vgl. Bild 2). Die Anpassung des Schallabsorptionsgrades kann durch die Wahl der akustisch wirksamen Schichtdicke erfolgen, die abhängig ist von der zulässigen Höchstgeschwindigkeit und dem SV-Anteil. [H SO, Entwurf, 2015]

Bild 2: Optimale Anpassung des Schallabsorptionsgrades α auf ein Verkehrsgeräuschspektrum [H SO, Entwurf, 2015]

Ein weiterer akustischer Kennwert ist der Strömungswiderstand, der nach [DIN EN 29053, 1993] gemessen wird. Er ist definiert als das Verhältnis von Druckdifferenz zwischen Lufteintrittsquerschnitt und Luftaustrittsquerschnitt zum Volumenstrom, der durch den Prüfkörper hindurchgeht [DIN EN 29053, 1993]. Die absorbierenden Eigenschaften Offenporiger Asphalte beeinflussen den Strömungswiderstand, welcher ebenfalls von bautechnischen Merkmalen und Randbedingungen abhängig ist. So haben der Anteil zugänglicher Hohlräume, die Sieblinie und die Kornform, sowie der Verschmutzungsgrad einen erheblichen Einfluss auf den Strömungswiderstand. [H SO, Entwurf, 2015]

4 Untersuchungsmaterialien

Die Auswahl der Untersuchungsmaterialien erfolgte in diesem Forschungsprojekt auf Grundlage internationalen Literatur und einer Marktrecherche sowie unter Berücksichtigung der Ergebnisse des Forschungsprojekts [FE 07.0222/2007/ARB, 2013].

4.1 Internationale Literaturrecherche

Nach [VOSKUILEN, VAN DE VEN, 2010] war in den Niederlanden ein PA 16, mit einer Einbaudicke von 5 cm, einem Hohlraumgehalt \geq 20 Vol.-% und einem Bitumenanteil von 4,2 M.-% die Standardbauweise. Dabei wurde hauptsächlich ein Straßenbaubitumen 70/100 verwendet.

Die Literaturauswertung des [Europäische Kalkverband EuLa, 2011] zeigt, dass Kalkhydrat in vielen europäischen Ländern dem Asphaltmischgut für Offenporige Asphalte beigemischt wird, mit dem Hauptziel, dem Haftverlust zwischen Bitumen und Gestein entgegenzuwirken. Ebenso soll durch den Einsatz von Kalkhydrat die Alterung, die Spurrinnenbildung und der Verschleiß verlangsamt werden. In den Niederlanden ist Kalkhydrat in Offenporigen Asphaltdeckschichten vorgeschrieben. Sowohl in den USA als auch in Frankreich sind Teststrecken gebaut worden, bei denen die Zugabe von Kalkhydrat die bautechnische Nutzungsdauer um 20 bis 25 % erhöhen soll. [Europäische Kalkverband EuLa, 2011]

Diese positiv geschilderten Aspekte zur Thematik der Kalkhydratverwendung sind in der Praxis umstritten.

4.2 Marktrecherche

Als Grundlage für die Marktrecherche dienten Daten Offenporiger Asphaltdeckschichten, die aus einer Länderabfrage des Bundesministeriums für Verkehr und digitale Infrastruktur (BMVI) stammen [BMVI, unveröffentlicht]. Dabei handelt es sich um ausgewählte Strecken mit unterschiedlich langer Nutzungsdauer. Die Daten wurden hinsichtlich der Zusammensetzung analysiert und ausgewertet.

Ein Überblick über die Zusammensetzungen ist in Tab. 2 dargestellt.

Strecke	Additive	Füller		Gestein 1	Gestein 2	Gestein 3	Gestein 4
		Art	[M%]				
1	Fasern	Kalkstein	4,0	Diabas 0/2	Diabas 5/8		
2		Kalkstein	5,0	Diabas 0/2	Diabas 5/8		
3	Fasern	Kalkstein	5,0	Rhyolith 5/8			
4	Fasern	Kalkstein	5,0	Rhyolith 5/8			
5	Fasern	Kalkstein	4,5	Basalt 0/2	Rhyolith 5/8		
6	Faserpellets	Kalkstein	4,0	Moräne 0/2	Diabas 5/8	HKlit 5/8	LiDonit 5/8
7	Faserpellets	Kalkstein	5,0	E-Ofenschlacke 5/8			
8	Faserpellets	Kalkstein	5,0	E-Ofenschlacke 5/8			
9		Kalkstein	5,0	Granit 5/8	Grauwacke 5/8		
10	Faserpellets	Kalkstein	5,0	Moräne 5/8			
11	Fasern	Kalkstein	k.A.	Gneis 5/8			
12		Kalkstein	4,7	Granit 5/8			
13		Kalkstein	4,7	Granit 5/8			
14	Faserpellets	Kalkstein	5,0	Moräne 0/2	Quarzporphyr 5/8		
15		Kalkstein	5,0	Diabas 5/8			
16		Kalkstein	5,0	Diabas 5/8			
17	Faserpellets	Kalkstein	5,5	Granit 5/8	Grauwacke 5/8		
18	Faserpellets	Kalkstein	5,5	Granit	Grauwacke 5/8		
19	Fasern	Kalkstein	5,0	Diabas 5/8			
20		Kalkstein	5,0	Diabas 5/8			
21	Fasern	Kalkstein	3,0	Diabas 0/2	Diabas 5/8		
22		Kalkstein	5,0	Rhyolith 5/8	LiDonit 5/8		
23	Faserpellets	Kalkstein	6,5	Quarzporphyr 0/2	Quarzporphyr 5/8		
24	Faserpellets	Muschelkalk	4,5	Moräne 0/2	Porphyr 5/8		
25	Faserpellets	Kalkstein	5,0	Diabas 5/8			
26			k.A.				
27	Faserpellets	Kalkstein	4,0	Granit 5/8	Grauwacke 5/8		

Tab. 2: Zusammensetzung der Mischgüter aus der Länderabfrage des BMVI [BMVI, unveröffentlicht]

4.3 Erkenntnisse aus dem FE 07.0222/2007/ARB

Das Forschungsprojekt FE 07.0222/2007/ARB beschäftigte sich mit der Optimierung der asphalttechnischen und akustischen Eigenschaften von Offenporigen Asphaltdeckschichten hinsichtlich Nutzungsdauer und schalltechnischer Wirksamkeit. In dem Forschungsprojekt konnte bei einem Hohlraumgehalt unter 23 Vol.-% ein Einfluss durch die Zugabe feiner Gesteinskörnung auf die akustischen Eigenschaften festgestellt werden. Bei einem höheren Hohlraumgehalt und unter Berücksichtigung des passenden Gesteins besteht die Möglichkeit unter Beibehaltung der akustischen Eigenschaften die Nutzungsdauer Offenporiger Asphalte durch höhere Zugabeanteile des Mörtels zu verlängern. [FE 07.0222/2007/ARB, 2013]

4.4 Auswahl der Untersuchungsmaterialien

Um eine möglichst große Bandbreite der in der Praxis verwendeten Bitumen abzudecken, wurden von unterschiedlichen Herstellern sechs hochmodifizierte Polymermodifizierte Bindemittel (PmB-H), zwei gebrauchsfertige Gummimodifizierte Bitumen (RmB R) und ein Gummimodifiziertes Bitumen mit Gummimodifiziertem Bitumengranulat (RmB G) ausgewählt und beschafft. Einen Überblick über die Bezeichnungen der verschiedenen Bindemittel bietet Tab. 3. Einige der aufgeführten Bindemittel bietet Tab. 3. Einige der aufgeführten Bindemittel wurden in den Strecken der Länderabfrage verwendet. Die nicht in der Tab. 3 genannten Strecken wurden mit anderen Bindemitteln hergestellt.

Bezeichnung	verwendet in	Bitumen-	
5	Strecke	sorte	
B1	5, 6, 19, 22		
B2	2		
B3	3, 4		
B4	24	РШБ-П	
B5	14,17,18,23,25,27		
B6			
B7	9, 12, 13, 15, 16	DmD D	
B8			
B9		RmB G	
Die Streckenangaben beziehen sich auf Tab. 2			

Tab. 3: Auswahl der Bindemittel

Die ausgewählten RmB R und das RmB G sind entsprechend der [TL RmB-StB By, 2010] für Offenporige Asphalte geeignet. Gemäß den [TL Asphalt-StB, 2007/2013] sind die gewählten Polymermodifizierten Bindemittel PmB-H (40/100-65 A) für Offenporige Asphalte vorzusehen.

Die Auswahl der Gesteinsarten wurde in Absprache mit dem betreuenden Gremium getroffen. Untersucht wurden ein basisches und ein saures Gestein (Diabas und Granit). Die Gewinnungsstätten sind in Tab. 4 aufgeführt.

Gesteinsart	Gewinnungsstätte
Diabas	Halbeswig
Granit	Ortenburg

Tab. 4: Auswahl der Gesteinsarten

Es wurden PA-Konzepte mit einem Größtkorn von 8 und 11 mm vorgesehen.

Als Referenzfüller wurde gemäß [M OPA, 2013] ein Kalksteinfüller gewählt. Darüber hinaus wurde der Einfluss von hochversteifendem Kalksteinfüller und Mischfüller mit Kalkhydrat auf das Nutzungsverhalten von Offenporigem Asphalt untersucht.

5 Beschreibung des Untersuchungsprogramms

Das durchgeführte Untersuchungsprogramm lässt sich in drei Abschnitte unterteilen. Im ersten Abschnitt wurden Voruntersuchungen zur Charakterisierung der Materialkomponenten und der möglichen Gemischzusammensetzungen durchgeführt. Der zweite Abschnitt hatte das Ziel die Materialzusammensetzung zu optimieren. Im dritten Abschnitt wurde eine realistische Liegezeitsimulation an den zuvor optimierten Materialzusammensetzungen durchgeführt und die Dauerhaftigkeit geprüft.

5.1 Voruntersuchungen

Bindemitteluntersuchungen

Die materialspezifischen und rheologischen Eigenschaften der Bindemittel wurden jeweils im frischen Zustand, nach Kurzzeitalterung und nach kombinierter Kurzzeit- und Langzeitalterung anhand der folgenden Kennwerte bestimmt:

- Nadelpenetration nach [DIN EN 1426, 2015]
- Erweichungspunkt Ring und Kugel nach [DIN EN 1427, 2015]
- Phasenwinkel und Schubmodul im DSR mit Temperatursweep von -10 °C bis 150 °C nach [DIN EN 14770, 2012]
- Biegekriechsteifigkeit im BBR bei -25 °C, -16 °C und -10 °C nach [DIN EN 14771, 2012]

Die Kurzzeitalterung wurde mit dem Rolling Thin Film Oven Test (RTFOT-Verfahren) nach [DIN EN 12607-1, 2015] simuliert. Die Bindemittelproben wurden dabei für 75 \pm 1 Minuten bei 163 °C in einer Wärmekammer konditioniert. Mittels Pressure Ageing Vessel (PAV) nach [DIN EN 14769, 2012] wurde die beschleunigte Langzeitalterung bei 85 °C für 65 h \pm 30 min durchgeführt.

Gesteinseigenschaften

Die Lieferkörnungen wurden auf ihre Kornform hin untersucht. Dabei wurde die Plattigkeitskennzahl nach [DIN EN 933-3, 2012] bestimmt. Zudem wurde die Sphärizität (SPHT) mittels einer computerbasierten Analysemethode (MATLAB[®]) ermittelt. Dazu wurde von der Lieferkörnung eine Probenmenge von 50 Gesteinskörnern genommen und in drei Lagen fotografiert. Die Sphärizität wurde mittels der folgenden Formel ermittelt:

$$SPHT = \frac{4 * \pi * A}{U^2}$$
(1)

Dabei ist U der gemessene Umfang und A die gemessene Fläche einer Partikelprojektion. Eine ideale Kugelform hat eine Sphärizität von 1, für andere Formen gilt SPHT < 1 (vgl. Bild 3).

Bild 3: Diagramm zur visuellen Beurteilung der Sphärizität und Rundheit von Kornformen [DIN EN ISO 13503-2, 2010]

Herstellung von Mastixvarianten

Um bei der Definition der geforderten 40 Sieblinien einen größeren Variationsraum zu ermöglichen, wurden 20 verschiedene Mastixvarianten hergestellt. Diese variierten in ihrer Zusammensetzung durch unterschiedliche Kombination von:

- Bindemittel
- Kalksteinfüller (5/90) (KS1)
- Hochversteifendem Kalksteinfüller (KS2)
- Kalkhydrat
- Bindemittelträger

und den jeweiligen Zugabeanteilen.

Die Mastixeigenschaften wurden mit dem Dynamischen Scherrheometer untersucht.

Computerbasierte Modellberechnung

Ebenfalls zu den Voruntersuchungen gehörte die computerbasierte Modellberechnung von verschiedenen Sieblinienvarianten. Dabei dienten die verschiedenen Sieblinienvarianten als Eingangsgrößen, mit denen durch die Modellberechnung die Hohlraumverteilung in einer Asphaltprobe simuliert wurde. Dazu wurden die Volumina der einzelnen Kornfraktionen berechnet und die Anzahl sowie die Verteilung der Körner innerhalb der Kornfraktion anhand des Siebrückstandes festgelegt. Gesteinskörner < 1 mm (in Ausnahmefällen) bzw. < 2 mm (in der Regel) konnten nicht berücksichtigt werden und wurden dem Füllervolumen hinzuaddiert. Die Modellberechnung basiert auf einem Zweiphasensystem, sodass die Füller-, Bitumen- und Hohlraumanteile gemeinsam eine Phase bilden. Wie in

[SCHÜLER et al., 2016] beschrieben, werden auf Grundlage der Anzahl, Verteilung und Radien der Gesteinskörner mit Hilfe des Lubachevsky-Stillinger Algorithmus dichte Kugelpackungen gebildet (vgl. Bild 4).

Bild 4: Simulierte Gesteinskugeln als dichte Kugelpackung im Einheitswürfel

Im nächsten Schritt dienen die Positionen und Radien der Kugeln als Ausgangspunkt für ein gewichtetes Voronoi-Diagramm. Durch variables Schrumpfen wird durch das gewichtete Voronoi-Diagramm eine kubisch gebrochene Kornform (Voronoi-Zelle) erzeugt (vgl. Bild 5).

Bild 5: Vergleich der dichten Kugelpackung mit geschrumpften Voronoi-Zellen [SCHÜLER et al., 2016]

Als Endresultat wird die Porosität des Würfels ausgeben, aus der die Volumenanteile von Sand, Füller und Bitumen herauszurechnen sind, um den Hohlraumgehalt der Modellstruktur zu erhalten. Zusätzlich lässt sich der Einheitswürfel mitsamt der Modellstruktur visualisieren und Schnittbilder des Würfels erzeugen.

5.2 Optimierung der Materialzusammensetzung

Die Optimierung der Materialzusammensetzung erfolgt anhand von drei Untersuchungsserien.

- (1) Die erste Untersuchungsserie diente zur Eingrenzung der Sieblinien. Zehn verschiedene Gesteinskörnungsvarianten wurden in Kombination mit einem definierten Referenz-Mastix realisiert und labortechnisch geprüft.
- (2) In der zweiten Untersuchungsserie wurde der Kornformeinfluss untersucht. Dazu wurden an den zuvor ermittelten Gesteinskörnungsvarianten gezielt Veränderungen an der Kornform vorgenommen.
- (3) Die dritte Untersuchungsserie diente zur Überprüfung des Mörteleinflusses auf die Hohlraumbedingungen im Offenporigen Asphalt. Dazu wurden die in der zweiten Untersuchungsserie ermittelten optimalen Gesteinskörnungsvarianten mit verschiedenen Mastixvarianten realisiert.

Ein Flussdiagramm des Projektablaufes ist im Anhang (Bild A-1) abgebildet.

In jeder Untersuchungsserie wurden zunächst [TP Marshall-Probekörper nach Asphalt-StB. Teil 30, 2007] und anschließend Asphalt-Probeplatten mit dem Walzsektor-Verdichtungsgerät nach [TP Asphalt-StB, Teil 33, 2007] mit angepasstem Verdichtungsprogramm nach [M OPA, 2013] hergestellt. Als Bewertungskriterium dienten bei allen Untersuchungsserien neben dem Hohlraumgehalt auch der Strömungswiderstand [DIN EN 29053, 1993] und der Schallabsorptionsgrad [DIN EN ISO 10534-1, 2001], die an Bohrkernen aus den Asphalt-Probeplatten bestimmt wurden. Die Asphalt-Probeplatten wurden mit einer Soll-Höhe von 50 mm hergestellt (für Untersuchungsserie 1 abweichend 40 mm). Für die Untersuchungen des Schallabsorptionsgrades wurden die Bohrkerne auf 40 mm gesägt. Die Bohrkerne wurden abweichend von der Norm nach dem in Bild 6 dargestellten Prinzip aus den Asphalt-Probeplatten entnommen. Zusätzlich wurde der Kornverlust der Marshall-Probekörper nach [TP Asphalt-StB, Teil 17, 2007] ermittelt.

Bild 6: Prinzipskizze der Bohrkernentnahme

Schallabsorptionsgrad

Die Schallabsorptionsmessungen erfolgten in Anlehnung an die DIN EN ISO 10534-1, da eine kontinuierliche Messung der Lufttemperatur nicht möglich war. In einigen Frequenzen war die Bandpass-Filterung der Messsignale nicht möglich. Diese konnte jedoch per FFT-Screen (Fast Fourier Transform-Screen) gegengeprüft werden.

Zur Messung des Schallabsorptionsgrades wurden Bohrkerne mit einem Durchmesser von 98 mm aus im Walzsektor-Verdichtungsgerät nach [TP Asphalt-StB, Teil 33, 2007] hergestellten Asphalt-Probeplatten herausgebohrt. Da der Innendurchmesser des Probekörperhalters des Kundtschen Rohres nur 98,5 mm beträgt, musste von einem Durchmesser von 100 mm geringfügig abgewichen werden. Der Frequenzbereich, den das Kundtsche Rohr abdecken kann, liegt zwischen 100 Hz \leq f \leq 1800 Hz. Während der Prüfung wurde die Frequenz in Terzabständen erhöht.

Bild 7: Schematische Darstellung der Prüfanordnung nach [DIN EN ISO 10534-1, 2001] und [DIN 52215 (zurückgezogen), 1963]

In Bild 7 ist schematisch die Prüfanordnung der Schallabsorptionsmessung dargestellt. Die Prüfanordnung in der Audiometriekabine ist in Bild 8 abgebildet. Während der Messung wurde mit dem Mikrophon die stehende Schallwelle abgefahren und dabei die Druckmaxima und Druckminima in [dB] erfasst. Mit der Pegeldifferenz ΔL lässt sich mit der Formel (2) nach [DIN EN ISO 10534-1:2001] der Schallabsorptionsgrad α berechnen:

$$\alpha = \frac{4 \cdot 10^{\Delta L/20dB}}{(10^{\frac{\Delta L}{20dB}} + 1)^2} \quad [-]$$
(2)

Bild 8: Die Prüfanordnung in der Audiometriekabine

Nach [FE 07.0222/2007/ARB, 2013] sind Schallabsorptionsgrade zwischen 0,7 und 0,8 einem akustisch guten und über 0,8 einem akustisch sehr guten Bereich zuzuordnen.

Strömungswiderstand

Die Bestimmung des spezifischen Strömungswiderstandes R_s erfolgte nach [DIN EN 29053, 1993] mit dem Luftgleichstromverfahren. Die Bohrkerne mit einem Durchmesser von 100 mm wurden passgenau in den Probekörperhalter eingebracht. Zur Vermeidung von Luftströmungen zwischen Probekörper und Probekörperhalter wurden die Zwischenräume mit einem geeigneten Material abgedichtet. Der spezifische Strömungswiderstand wird nach [DIN EN 29053, 1993] durch die folgende Formel ermittelt:

$$R_{\rm S} = \frac{\Delta p}{q_{\rm V}} * A \quad [{\rm Pa \ s/m}] \tag{3}$$

Während der Messung des Strömungswiderstandes wurden zusätzlich Temperatur, relative Luftfeuchte und atmosphärischer Luftdruck bestimmt.

Strömungswiderstände unter 300 Pa s/m gelten in Hinblick auf die akustische Wirksamkeit als optimal [FE 07.0222/2007/ARB, 2013].

Kornverlust von Marshall-Probekörpern

Der Kornverlust wurde abweichend von den [TP Asphalt-StB, Teil 17, 2007] an drei Marshall-Probekörpern ermittelt. Die Probekörper werden dazu einzeln in die Trommel des Los-Angeles-Prüfgerät gegeben und nach 300 Umdrehungen wieder entnommen. Nach der [DIN EN 12697-17, 2017] muss die Prüftemperatur zwischen 15 und 25 °C liegen. Die Prüftemperatur von 22 °C konnte mit der Genauigkeit von ± 2 °C eingehalten werden. Vor (w₁) und nach (w₂) der Prüfung ist das Gewicht der Marshall-Probekörper zu bestimmen. Aus der Differenz der Massen wird für jeden Marshall-Probekörper der Kornverlust PL nach der Formel (4) berechnet:

PL = 100 *
$$\frac{w_1 - w_2}{w_1}$$
 [M. -%] (4)

5.3 Abschließende Asphaltuntersuchungen

In der abschließenden Untersuchungsserie wurden die Asphaltuntersuchungen an acht verschiedenen PA-Konzepten durchgeführt. Je PA-Konzept wurden sechs Asphalt-Probeplatten hergestellt, im gleichen Verfahren wie in 5.2 beschrieben.

Je PA-Konzept wurden zwei Asphalt-Probeplatten mit dem Bochumer Alterungsverfahren (BAV) [FE 04.205/2006/ARB, 2013] gealtert und anschließend einer Frost-Tausalz-Beanspruchung unterzogen. An diesen so beanspruchten Asphalt-Probeplatten wurde das Nutzungsverhalten anhand einer Oberflächenverschleißprüfung ermittelt. Aus zwei weiteren Asphalt-Probeplatten je PA-Varianten (ohne Alterung) wurden Bohrkerne entnommen, an den der Schallabsorptionsgrad und der Strömungswiderstand bestimmt wurden. Abschließend wurden an diesen Bohrkernen computertomographische Untersuchungen durchgeführt, mit denen die innere Hohlraumstruktur ermittelt wurde.

Bochumer Alterungsverfahren

Das Bochumer Alterungsverfahren (BAV) wurde zur künstlich beschleunigten Asphaltalterung in Anlehnung an den Modelltopf nach POTSCHKA entwickelt. Die Asphaltalterung erfolgt durch das Durchströmen der mit dem Walzsektor-Verdichtungsgerät hergestellten Asphalt-Probeplatten mit heißer Luft. Dazu werden die Asphalt-Probeplatten auf ein Lochblech platziert und mit einem passgenauen geschlossenen Behälter einzeln umschlossen. Der verschlossene Behälter wird in einem Trockenschrank positioniert und die Luftzufuhr angeschlossen. Die Luft wird über eine Membran-Vakuumpumpe vorgewärmt und durch das System befördert. [FE 04.205/2006/ARB, 2013]

Die Asphalt-Probeplatten wurden bei 100 °C für 72 Stunden mit einer Luftmenge von 7500 ml/min gealtert.

Frost-Tausalz-Widerstand

Die Ermittlung des Frost-Tausalz-Widerstandes erfolgte in Anlehnung an das CDF-Verfahren [DIN CEN/TS 12390-9, 2006]. Dazu wurden Asphalt-Probeplatten abweichend vom CDF-Verfahren in einer 22%igen-NaCI-Lösung, wie sie im Winterdienst verwendet wird, gelagert und durch zehn Frost-Tau-Wechsel beansprucht. Die Temperaturvorgaben (siehe Tab. 5) erfolgen über die Luftkühlung eines Klimaschranks, wodurch die Temperatur der NaCI-Lösung träger reagiert, als beim CDF-Verfahren (siehe Bild 9). Eine ausreichende Frost- und frostfreie Phase konnte dennoch sichergestellt werden.

Phase	Temperatur [°C]	Dauer [h]
1	+20	0:01:00
2	+20	6:00:00
3	-20	5:59:00

Tab. 5: Randbedingungen der Frost-Tau-Wechsel

Bild 9: Temperaturverlauf während der Frost-Tau-Wechsel

Oberflächenverschleißprüfung

Durch die Oberflächenverschleißprüfung (OVP) können zwei Belastungszustände der Asphaltdeckschicht im Laboratorium praxisnah simuliert werden. Zum einen die Beanspruchung der Oberfläche durch richtungswechselnde Drehbeanspruchungen (Lenkvorgang im Stillstand), zum anderen die Beanspruchung durch Rangieren aus dem Parkstand. Der Probekörper wird dazu oszillierend in horizontaler Richtung verschoben und zeitgleich mit einem vertikal belasteten Prüfrad mechanisch beansprucht. [ROOT, 2008]

Eine Prinzipskizze des Darmstadt-Scuffing-Devices (DSD-Prüfgerät) ist in Bild 10 dargestellt. [DIN CEN/TS 12697-50, 2018]

Bild 10: Schematische Darstellung des DSD-Prüfgerätes [DIN CEN/TS 12697-50, 2018]

Die Probekörper wurden aus im Walzsektor-Verdichtungsgerät hergestellten Asphalt-Probeplatten auf die Maße 26 cm x 26 cm gesägt. Vor und nach der Oberflächenverschleißprüfung wurden die Probekörper zur Beurteilung fotografiert, ausgemessen und gewogen. Der Probekörper ist vor der Versuchsdurchführung auf 40 °C zu temperieren und während der Prüfung auf dieser Temperatur zu halten. [DIN CEN/TS 12697-50, 2018]

Die Oberflächenverschleißprüfung wurde nach den in Tab. 6 dargestellten Randbedingungen durchgeführt. Bild 11 zeigt den Prüfaufbau im Laboratorium.

Randbedingungen der Oberflächenverschleißprüfung				
Vertikalbelastung (Prüfrad)	1000 N			
Drehwinkelgeschwindigkeit	5 U/min			
Zustellgeschwindigkeit (Probe- körper), horizontal	0,04 m/s			
Anzahl der doppelten Schub- beanspruchungsschwingspiele	10			

Tab. 6: Randbedingungen der Oberflächenverschleißprüfung nach [DIN CEN/TS 12697-50, 2018]

die abgeschwächte Strahlung (Strahlungsintensität I) in jedem Flächendetektorpixel gemessen. Die Pixelanzahl des Flächendetektors bestimmt die Anzahl der virtuellen Volumenelemente (Voxel genannt). Da sich der Probekörper während der Untersuchung um 360 ° dreht, entstehen n-fache zweidimensionale Schnittbilder mit verschiedenen Grauwerten, die aus den mittleren Dichten entlang eines Röntgenstrahls visualisiert werden. Indem jedem Voxel ein mittlerer Absorptionsgrad zugeordnet wird, entsteht aus den n-fachen Schnittbildern ein dreidimensionales Modell des Probekörpers. [LEISTRA 2, 2012]

Die computertomografischen Untersuchungen wurden an der Universität Stuttgart durch den Lehrstuhl für Kontinuumsmechanik, Prof. Steeb (ehemaliger Professor an der Ruhr-Universität Bochum) durchgeführt.

Bild 11: DSD-Prüfgerät im Laboratorium

Computertomographische Untersuchungen

Durch die computertomographische Untersuchung wurde die Struktur der Hohlräume, insbesondere der kommunizierenden Hohlräume in den Asphalt-Probeplatten ermittelt.

Bild 12: Prinzipskizze der CT-Messung [LEISTRA 2, 2012]

Wie in Bild 12 erkennbar ist, wird der Probekörper (Bohrkern aus einer Asphalt-Probeplatte) von einer Ausgangsstrahlungsintensität I₀ durchdrungen und

6 Ergebnisse und Auswertung

6.1 Voruntersuchungen

6.1.1 Bindemitteluntersuchungen

Die Ergebnisse des Erweichungspunktes Ring und Kugel nach [DIN EN 1427, 2015] an den frischen sowie gealterten Bindemitteln sind in Tab. 7 zusammengestellt. Bei den Bindemitteln B1 bis B6 handelt es sich um Polymermodifizierte Bitumen, B7 und B8 sind gebrauchsfertige Gummimodifizierte Bitumen und B9 ist ein Gummimodifiziertes Bitumen mit Gummimodifiziertem Bitumengranulat.

Erweichungspunkt Ring und Kugel [°C]				
	Frischer Zustand	RTFOT	RTFOT+ PAV	Δ
B1	74,6	81,0	91,0	16,4
B2	86,0	88,0	92,5	6,5
B3	81,5	83,0	92,0	10,5
B4	72,0	78,0	93,0	21,0
B5	71,0	75,0	78,0	7,0
B6	64,6	80,0	81,0	16,4
B7	85,0	86,0	96,0	11,0
B8	67,2	73,6	83,0	15,8
B9	57,8	62,2	70,8	13,0

Tab. 7: Ergebnisse Erweichungspunkt Ring und Kugel

Die Veränderung des Erweichungspunktes Ring und Kugel im frischen Zustand gegenüber dem Zustand nach Langzeitalterung der Bindemittel ist der Spalte Δ zu entnehmen.

Die Tab. 8 enthält die Ergebnisse der Nadelpenetration der Bindemittel in den drei Alterungsstufen. In der Spalte Δ ist die Änderung aufgeführt.

Nadelpenetration [1/10 mm]				
	Frischer Zustand	RTFOT	RTFOT + PAV	Δ
B1	40	29	23	-17
B2	36	30	23	-13
B3	56	42	27	-29
B4	59	42	27	-32
B5	78	51	39	-39
B6	62	46	37	-25
B7	38	27	15	-23
B8	36	23	17	-19
B9	49	39	24	-25

Tab. 8: Ergebnisse der Nadelpenetration

Die Untersuchungsergebnisse aus dem BBR wurden bei der Biegekriechsteifigkeit von 300 MPa und bei dem m-Wert von 0,3 ausgewertet und die zugehörigen Temperaturen in den Tab. 9 bis Tab. 11 für den jeweiligen Alterungsgrad der Bindemittel aufgeführt. Zusätzlich ist zur Erfahrungssammlung in jeder Tabelle die Differenz der Temperaturen als Δ Tc angegeben.

Frischer Zustand					
	T [°C] bei S = 300 MPa	T [°C] bei m = 0,3	ΔTc		
B1	-20,0	-19,9	0,1		
B2	-20,5	-18,9	1,6		
B3	-23,0	-24,7	-1,7		
B4	-23,6	-24,4	-0,8		
B5	-24,4	-24,6	-0,2		
B6	-20,7	-21,0	-0,3		
B7	-21,9	-17,1	4,8		
B8	-21,3	-20,7	0,6		
B9	-23,2	-23,5	-0,3		

Tab. 9: Temperaturen bei einer Biegekriechsteifigkeit von300 MPa und dem m-Wert von 0,3 (frischer Zustand)

RTFOT				
	T [°C] bei S = 300 MPa	T [°C] bei m = 0,3	ΔТс	
B1	-19,4	-16,4	3,0	
B2	-19,5	-18,2	1,3	
B3	-21,8	-23,1	-1,3	
B4	-22,1	-22,0	0,1	
B5	-24,9	-26,2	-1,3	
B6	-19,7	-21,1	-1,4	
B7	-21,7	-15,7	6,0	
B8	-20,3	-18,3	2,0	
B9	-21,9	-20,7	1,2	

Tab. 10: Temperaturen bei einer Biegekriechsteifigkeit von 300MPa und dem m-Wert von 0,3 (nach RTFOT)

RTFOT+PAV							
	T [°C] bei S = 300 MPa	T [°C] bei m = 0,3	ΔTc				
B1	-17,0	-9,2	7,7				
B2	-18,3	-11,4	6,9				
B3	-	-	-				
B4	-20,4	-12,7	7,7				
B5	-22,4	-21,1	1,3				
B6	-17,9	-17,6	0,3				
B7	-20,1	-12,5	7,6				
B8	-18,9	-15,1	3,8				
B9	-20,3	-18,0	2,2				

Tab. 11: Temperaturen bei einer Biegekriechsteifigkeit von 300MPa und dem m-Wert von 0,3 (nach RTFOT+PAV)

Auf Grund der Zunahme der Steifigkeit ließ sich die Probe des Bindemittels B3 nach der Langzeitalterung nicht mehr verarbeiten. Die mittels DSR bestimmten Ergebnisse wurde für die Äquisteifigkeitstemperatur bei dem Komplexen Schermodul von 15 kPa ausgewertet und in Tab. 12 dargestellt.

Äq	Äquisteifigkeitstemperatur bei 15 kPa [°C]							
	Frisch	Frisch RTFOT						
B1	57,1	59,9	72,7					
B2	58,4	61,1	68,0					
B3	53,5	58,3	67,9					
B4	54,6	60,2	71,2					
B5	48,8	54,4	60,0					
B6	47,5	53,0	62,3					
B7	57,1	54,8	74,6					
B8	48,8	51,2	65,8					
B9	47,5	49,1	62,7					

 Tab. 12: Äquisteifigkeitstemperatur bei dem Komplexen Schermodul von 15 kPa

Zur Veranschaulichung der verschiedenen Kurvenverläufe des Komplexen Schermoduls und des Phasenwinkels der verwendeten Bindemittel über die Temperaturspanne von -10 bis +150 °C ist exemplarisch das Black-Diagramm der Bindemittel im frischen Zustand in Bild 13 dargestellt.

Der Phasenwinkel wurde bei der Äquisteifigkeitstemperatur bei 15 kPa ausgewertet und in Tab. 13 aufgeführt.

Phasenwinkel bei der Äquisteifigkeitstempe- ratur bei 15 kPa [°]						
	Frisch	RTFOT+ PAV				
B1	63,5	60,8	56,7			
B2	54,9	53,6	54,5			
B3	56,6	52,4	52,8			
B4	61,3	57,1	56,3			
B5	61,7	59,1	58,9			
B6	65,3	61,3	60,9			
B7	55,5	50,1	53,8			
B8	61,4	58,2	63,8			
B9	68,6	63,7	68,3			

Tab. 13: Phasenwinkel bei der Äquisteifigkeitstemperatur bei 15 kPa

Bild 13: Black-Diagramm der verwendeten Bindemittel im frischen Zustand

6.1.2 Gesteinseigenschaften

Mittels Pyknometer-Verfahren wurden die Rohdichten der Füller gemäß [DIN EN 1097-7, 2008] und der Gesteine gemäß [DIN EN 1097-6, 2013] ermittelt. Die Ergebnisse sind in Tab. 14 dargestellt.

Material	Rohdichte [g/cm³]
Kalksteinfüller (5/90) (KS1)	2,727
Kalksteinfüller (KS2)	2,764
Kalkhydrat	2,377
Diabas 0/2	2,832
Diabas 2/5	2,878
Diabas 5/8	2,868
Diabas 8/11	2,862
Granit 2/5	2,634
Granit 5/8	2,637
Granit 8/11	2,637

Tab. 14: Rohdichten der verwendeten Materialien

Die granulometrischen Eigenschaften der beiden Gesteinsarten mit einem Korndurchmesser größer 5 mm wurden mittels [DIN EN 933-3, 2012], [DIN EN 933-4, 2015] und fotooptischer Auswertung mit MATLAB[®] bestimmt. Die Ergebnisse sind in Tab. 15 zusammengefasst. Die Sphärizität wurde als Mittelwert aus den Einzelergebnissen der drei Lagen ermittelt.

Material	Kornform- kennzahl SI	Plattigkeits- kennzahl Fl	Sphärizität SPHT
	[-]	[-]	[-]
Diabas 5/8	23	12	0,763
Diabas 8/11	13	11	0,756
Granit 5/8	24	7	0,738
Granit 8/11	10	8	0,768

Tab. 15: Granulometrie der Gesteinsarten

Die relative Häufigkeitsverteilung der Sphärizität in Bild 14 verdeutlicht die Notwendigkeit, die Partikelprojektionen in drei Lagen zu analysieren. Die Lage der Partikel beeinflusst die Ergebnisse der Sphärizität.

Bild 14: Relative Häufigkeitsverteilung der Sphärizität des Diabas 5/8

Bild 15 zeigt die grafische Darstellung der Mittelwerte der vier Gesteinsfraktionen.

Bild 15: Relative Häufigkeitsverteilung der Mittelwerte der Sphärizität aller Gesteinsarten

Die relativen Häufigkeiten aus Bild 15 sind als Summenkurven in Bild 16 dargestellt.

Bild 16: Relative Summenkurve der Mittelwerte der Sphärizität aller Gesteinsarten

In Bild 17 sind die Projektionen einer Gesteinsprobe eines Diabas 5/8, in Bild 18 die dazugehörigen, mittels MATLAB[®] berechneten, Sphärizitäten der einzelnen Partikelprojektionen dargestellt.

Bild 17: Partikelprojektionen einer Gesteinsprobe Diabas 5/8

Bild 18: Analysierte Partikelprojektionen einer Gesteinsprobe Diabas 5/8 mit deren jeweiligen Sphärizität

Zur Einordnung der Sphärizitäten der verschiedenen Gesteinsproben, wurde ein Gesteinskorn mit einem L/E-Verhältnis von 3 analysiert. Wie Bild 19 zeigt, betrug die Sphärizität dieses Gesteinskorns 0,593. Unter Berücksichtigung dieses Wertes konnte aus den Summenkurven in Bild 16 geschlussfolgert werden, dass die Partikel der untersuchten Gesteinsarten diesen Wert zu mindestens 95 % überschritten.

Bild 19: Sphärizität eines Gesteinskorns Diabas 5/8 mit dem Verhältnis L/E = 3

6.1.3 Herstellung der Mastixvarianten Herstellung mit Faserpellets

In Tab. 16 sind die Zusammensetzungen der Varianten 1 bis 12 aufgeführt. Mit der Variante 1 wurde die häufigste Zusammensetzung der Streckenvarianten der Länderabfrage umgesetzt. Die anderen Varianten stellen einen füllerreichen, einen bindemittelreichen und einen mittleren Mastix dar.

Variante	Binde- mittel	Faser- pellet	Kalk- stein- füller	Kalk- hydrat		
		[M	I%]			
1	56	4	40	-		
2	51	4	45	-		
3	71	71 4		-		
4	61	4	35	-		
5	56	4	31,5	8,5		
6	51 4		36,5	8,5		
7	71 4		4 16,5			
8	61	4	26,5	8,5		
9	56	4	23	17		
10	51 4		0 51 4 28		28	17
11	71 4 8		8	17		
12	61	4	18	17		

Tab. 16: Übersicht der Mastixvarianten (Pellets)

Die Mastixvarianten wurden mit dem Dynamischen Scherrheometer (DSR) nach [DIN EN 14770, 2012] untersucht. Die entsprechenden Verformungen wurden mittels Amplitudentests festgelegt. Die Ergebnisse sind in Bild 20 bis Bild 22 dargestellt.

Bild 20: Komplexer Schermodul und Phasenwinkel der Mastix-Varianten 1 bis 4 (im Vergleich B5 als Referenz-Bindemittel)

Bild 21: Komplexer Schermodul und Phasenwinkel der Mastix-Varianten 5 bis 8 (im Vergleich B5 als Referenz-Bindemittel)

Bild 22: Komplexer Schermodul und Phasenwinkel der Mastix-Varianten 9 bis 12 (im Vergleich B5 als Referenz-Bindemittel)

Die nach [M OPA, 2013] empfohlenen Zusätze als Bindemittelträger sind Zellulosefasern. Zur besseren Dosierung werden die Zellulosefasern in Asphaltmischanlagen als Pellets verwendet. Diese werden der Gesteinskörnung zu dosiert, um das Auflösungsverhalten der Pellets zu erleichtern. Für Handmischungen empfiehlt der Hersteller, die in diesem Forschungsprojekt verwendeten Zellulosepellets, für fünf Minuten bei 180 °C zu erwärmen und anschließend vorsichtig mit einem Mörser und Pistill zu verreiben. Trotz dieser Vorgehensweise wurde nicht der gewünschte stabilisierende Effekt der Zellulosefasern erzielt. Dies zeigte sich bei der Prüfung des Bindemittelablaufes an Asphaltmischgutproben nach [TP Asphalt-StB, Teil 18, 2007] mit Zellulosepellets.

Bild 23: Bindemittelablauf mit Faserpellets

Das Ergebnis von 0,6 M.-% Bindemittelablaufmenge bestätigt die unzureichende stabilisierende Wirkung der Zellulosepellets in Handmischungen (siehe Bild 23). Zum Vergleich wurde das gleiche Asphaltmischgut mit losen Zellulosefasern nach [TP Asphalt-StB, Teil 18, 2007] untersucht. Mit einem Bindemittelablauf von 0,1 M.-% wird eine gute stabilisierende Wirkung erreicht (siehe Bild 24). Auf Grundlage dieser Ergebnisse wurden im weiteren Verlauf des Untersuchungsprogrammes lose Zellulosefasern verwendet.

Bild 24: Bindemittelablauf mit losen Zellulosefasern

Herstellung mit losen Zellulosefasern

Zur Herstellung der neuen Mastixvarianten wurden die Zusammensetzungen verändert. Bei den vorherigen Varianten wurde der Einfluss der verschiedenen Bindemittel nicht ausreichend berücksichtigt.

Die Mastixvarianten wurden wie folgt bezeichnet:

MBm.X oder MX	.F
---------------	----

mit:

- M Mastix
- Bm Bindemittel 1 bis 9 gemäß Tab. 3
- F Füllervariante 1 bis 3 gemäß Tab. 17

Es wurde mit den neun Bindemitteln jeweils eine Variante mit einem hochversteifenden Kalksteinfüller (KS2) (Füllervariante 1) und eine Variante mit dem Kalksteinfüller KS1 und Kalkhydrat (Füllervariante 2) im Dynamischen Scherrheometer untersucht. Zudem wurde die aus der Länderabfrage resultierende Referenzvariante (Füllervariante 3) mit zwei Bindemitteln (B3 und B5) geprüft. Die Anteile der Zellulosefasern in den Mastixvarianten sollten nicht variiert werden, wodurch sie für die Untersuchungen im Dynamischen Scherrheometer nicht berücksichtigt wurden. Die Zusammensetzungen der verschiedenen Mastixvarianten sind in Tab. 17 aufgeführt.

Vari- ante	Binde- mittel	Binde- mittel	Kalk- stein- füller (KS2)	Kalk- stein- füller (KS1)	Kalk- hydrat
			[M.	-%]	
M1.1	B1	56,6	43,4	-	-
M1.2	B1	56,6	-	30,4	13,0
M2.1	B2	56,6	43,4	-	-
M2.2	B2	56,6	-	30,4	13,0
M3.1	B3	56,6	43,4	-	-
M3.2	B3	56,6	-	30,4	13,0
M3.3	B3	56,6	-	43,4	-
M4.1	B4	56,6	43,4	-	-
M4.2	B4	56,6	- 30,4		13,0
M5.1	B5	56,6	43,4	-	-
M5.2	B5	56,6	-	30,4	13,0
M5.3	B5	56,6	-	43,4	-
M6.1	B6	56,6	43,4	-	-
M6.2	B6	56,6	-	30,4	13,0
M7.1	B7	56,6	43,4	-	-
M7.2	B7	56,6	-	30,4	13,0
M8.1	B8	56,6	43,4	-	-
M8.2	B8	56,6	-	30,4	13,0
M9.1	B9	56,6	43,4	-	-
M9.2	B9	56,6	-	30,4	13,0

Tab. 17: Übersicht der Mastixvarianten (ohne Fasern)

Zur Bestimmung der Mastixeigenschaften wurde ein Temperatur-Frequenz-Sweep verwendet. Beispielhaft sind in Bild 25 die Verläufe der Komplexen Schermoduln und Phasenwinkel der Mastixvarianten mit Bindemittel B5 und den Füllervarianten 1 und 2 (M5.1 und M5.2) dargestellt. Im tiefen Temperaturbereich sind zwischen den beiden Varianten kaum Unterschiede auszumachen. Mit zunehmender Temperatur zeigt die Variante M5.2 ein höheres Steifigkeitsverhalten gegenüber der Variante M5.1.

Bild 25: DSR-Ergebnisse der Mastixvarianten M5.1 und M5.2 bei verschiedenen Frequenzen

Die Ergebnisse aller Mastixvarianten bei 1,59 Hz sind in Bild 26 bis Bild 29 dargestellt. Die Kennwerte der anderen Frequenzen können dem Anhang entnommen werden (s. Tab. A-7 bis Tab. A-11). Die Auswertung der Länderabfrage ergab, dass die Zusammensetzung der Mastixvariante M5.3 am häufigsten verwendet wurde. Daher wurde diese Variante als Referenz-Mastix in die Darstellung der Mastixuntersuchungen übernommen.

Bild 26: DSR-Ergebnisse der Mastixvarianten mit B1 bis B6 und Füllervarianten 1 und 3 (bei 1,59 Hz)

Bild 27: DSR-Ergebnisse der Mastixvarianten mit B7 bis B9 und Füllervariante 1 (bei 1,59 Hz)

Bild 29: DSR-Ergebnisse der Mastixvarianten mit B7 bis B9 und Füllervariante 2 (bei 1,59 Hz)

Die Sieblinienvarianten wurden so gewählt, dass möglichst der gesamte Anforderungsbereich der [TL Asphalt-StB, 2007/2013] berücksichtigt ist und einige Varianten den Anforderungsbereich sogar verlassen. Die 20 Sieblinienvarianten mit einem Größtkorn von 8 mm sind in Bild 30 bis Bild 33 dargestellt. Von diesen 20 Varianten entsprechen elf Varianten den Anforderungen der [TL Asphalt-StB, 2007/2013] bezüglich der Korngrößenverteilung (s. Tab. 18).

In Bild 34 bis Bild 37 sind die 20 Sieblinienvarianten mit einem Größtkorn von 11 mm dargestellt. Die Anforderungen der [TL Asphalt-StB, 2007/2013] bezüglich der Korngrößenverteilung erfüllen sieben Varianten (s. Tab. 19).

Die 40 PA-Varianten werden als Eingangsgröße für die computerbasierte Modellberechnung benötigt. Eine Übersicht der Siebdurchgänge ist dem Anhang zu entnehmen (s. Tab. A-1 und Tab. A-2).

Bild 31: Korngrößenverteilung der Varianten PA8_6 bis PA8_10

Bild 32: Korngrößenverteilung der Varianten PA8_11 bis PA8_15

Bild 33: Korngrößenverteilung der Varianten PA8_16 bis PA8_20

Bild 34: Korngrößenverteilung der Varianten PA11_21 bis PA11_25

Bild 35: Korngrößenverteilung der Varianten PA11_26 bis PA11_30

Bild 36: Korngrößenverteilung der Varianten PA11_31 bis PA11_35

Bild 37: Korngrößenverteilung der Varianten PA11_36 bis PA11_40

	Füller	fGk	gGk
	[M%]	[M%]	[M%]
PA8_1	2,8	2,1	95,1
PA8_2	3,9	3,3	92,8
PA8_3	2,8	2,1	95,1
PA8_4	3,6	5,0	91,4
PA8_5	4,7	5,3	90,0
PA8_6	4,7	5,1	90,2
PA8_7	4,6	0,4	95,0
PA8_8	5,8	0,7	93,5
PA8_9	5,8	5,3	88,9
PA8_10	4,6	2,3	93,1
PA8_11	4,6	2,1	93,3
PA8_12	4,7	3,8	91,5
PA8_13	4,6	2,8	92,6
PA8_14	4,9	0,6	94,5
PA8_15	5,3	1,0	93,7
PA8_16	4,7	5,5	89,8
PA8_17	4,7	5,1	90,2
PA8_18	3,7	5,1	91,2
PA8_19	4,7	5,1	90,2
PA8_20	4,7	5,2	90,1

Tab. 18: Zusammensetzung der Gesteinskörnung der PA8-Varianten

	Füller	fGk	gGk
	[M%]	[M%]	[M%]
PA11_21	2,8	2,1	95,1
PA11_22	3,0	2,3	94,7
PA11_23	2,8	2,1	95,1
PA11_24	3,9	3,2	92,9
PA11_25	5,0	4,6	90,4
PA11_26	4,8	4,2	91,0
PA11_27	4,8	2,3	92,9
PA11_28	4,6	0,4	95,0
PA11_29	4,7	5,1	90,2
PA11_30	4,6	1,0	94,4
PA11_31	4,6	2,4	93,0
PA11_32	4,7	1,7	93,6
PA11_33	4,7	4,7	90,6
PA11_34	3,9	4,1	92,0
PA11_35	3,8	1,3	94,9
PA11_36	4,7	4,6	90,7
PA11_37	4,7	2,3	93,0
PA11_38	4,7	4,6	90,7
PA11_39	5,7	4,4	89,9
PA11_40	6,0	4,6	89,4

Tab. 19: Zusammensetzung der Gesteinskörnung der PA11-Varianten

Das Ergebnis der computerbasierten Modellberechnung ist die *Porosity*, welche das Bindemittelvolumen, das Füllervolumen inklusive des Volumens der feinen Gesteinskörnung, sowie den Hohlraumanteil enthält. Da es sich dabei um eine volumetrische Betrachtung handelt, ist es noch nicht möglich den Hohlraum an dieser Stelle zu prognostizieren. Um erste Zusammenhänge zum simulierten Hohlraum stellen zu können, wurden von den 40 PA-Varianten Marshall-Probekörper hergestellt. Die Volumenverteilung innerhalb der Marshall-Probekörper wurde in die computerbasierte Modellberechnung übertragen. Anhand dieser lässt sich der Hohlraumgehalt ermitteln und die weiteren Schritte zur Darstellung der Modellberechnung ausführen.

Die computerbasierte Modellberechnung erzeugte nach der Berechnung des Hohlraumgehalts anhand der gewählten Anzahl der Kugeln und deren Durchmesser eine Korngrößenverteilung. Exemplarisch ist in Bild 38 die modellsimulierte Korngrößenverteilung der Variante PA8_7 dargestellt.

Bild 38: Simulierte Korngrößenverteilung der Variante PA8_7

Zum Vergleich ist in Bild 39 die Ausgangskorngrößenverteilung, sprich die Siebdurchgänge, die in die computerbasierte Modellberechnung eingegeben wurden, dargestellt.

In dem Bild 40 ist die resultierende Gesteinsverteilung als 3D-Darstellung für die Variante PA8_7 dargestellt. Die dabei dargestellten Hohlräume bestehen aus den Mörtel- und Hohlraumanteilen.

Bild 41 zeigt ein Schnittbild der Gesteinsverteilung durch den simulierten Würfel der Variante PA8_7.

Bild 39: Ausgangskorngrößenverteilung der Variante PA8_7

Bild 40: Simulierte Gesteinsverteilung der Variante PA8_7 im Einheitswürfel

Bild 41: Schnittbild durch den simulierten Würfel der Variante PA8_7

Auffällig ist die sehr kubische Form der Gesteinskörner. Diese ergibt sich aus der Simulation der Gesteinskörner, da die modellierten Gesteinskörner auf Kugeln basieren.

Die Gegenüberstellung der mittels computerbasierten Modellberechnung simulierten und am MPK erzielten Hohlraumgehalte ergab bei den PA8-Varianten nur ein Bestimmtheitsmaß von 0,6463. Wie Bild 42 veranschaulicht, war bei den PA11-Varianten mit einem Bestimmtheitsmaß von 0,0205 kein Zusammenhang zu erkennen.

Bild 42: Gegenüberstellung der Hohlraumgehalte

Um die Aussagekraft der größten Abweichungen zu verifizieren, wurde an ausgewählten, kritischen PA11-Varianten eine Validierung vorgenommen. Wie die Ergebnisse in Tab. 20 zeigen, variieren die Ergebnisse der Ermittlung der Hohlraumgehalte der einzelnen Simulationsdurchläufe nur gering.

Durchlauf	PA11_21	PA11_24	PA11_25	PA11_32	PA11_33	PA11_37
1	20,9	17,9	16,4	23,3	27,7	20,6
2	20,7	18,8	16,5	22,4	28,1	19,7
3	21,5	18,2	15,5	24,8	27,0	20,8
4	20,7	19,4	17,9	24,8	28,1	22,0
5	20,9	19,8	17,5	23,3	27,7	21,1
6	20,6	19,4	16,2	24,0	29,5	20,8
7	22,3	19,3	16,5	23,0	25,9	20,1
8	20,4	20,7	16,2	23,1	26,2	20,4
9	20,6	21,1	16,4	23,7	25,9	20,5
10	21,0	20,4	16,5	23,2	26,2	20,6
Ø Hohlraum Modell	21,0	19,5	16,6	23,6	27,2	20,7

6.1.5 Oberflächenverschleißprüfung

Im Rahmen von Voruntersuchungen wurden zur Sammlung erster Erkenntnisse an einer PA8-Zusammensetzung (ähnlich der PA8_7-Variante) mit unterschiedlichen Bindemitteln Oberflächenverschleißprüfungen durchgeführt.

Bild 43: Masseverlust der verschiedenen PA8-Konzepte

Wie Bild 43 veranschaulicht, kann mit der Wahl des Bindemittels ein großer Unterschied bezüglich des Masseverlustes festgestellt werden. Der geringste Masseverlust zeichnet sich bei der Verwendung des Bindemittels B3 ab, während bei der Verwendung der Bindemittel B1 und B5 ein vergleichsweise hoher Masseverlust zu erkennen ist. Da in diesen Voruntersuchungen andere Gesteinsarten verwendet wurden, als in dieser Forschungsarbeit, konnten die Ergebnisse der Oberflächenverschleißprüfung nicht mit den Ergebnissen der Mastixsteifigkeiten verglichen werden.

6.2 Optimierung der Materialzusammensetzung

6.2.1 Untersuchungsserie 1

Auswahl der Gesteinskörnungsvarianten

Die Gesteinskörnungsvarianten für die Untersuchungsserie 1 wurden anhand der Ergebnisse von Voruntersuchungen festgelegt. Dabei wurde auf eine große Bandbreite der Hohlraumgehalte geachtet. Die größte und kleinste Differenz der Hohlraumgehalte wurde ebenfalls berücksichtigt, ebenso wie ein besonders hoher Feinanteil. Die Übersicht aller PA8- und PA11-Varianten befindet sich im Anhang (s. Tab. A-3 bis Tab. A-6). In Tab. 21 und Tab. 22

	Einheit	PA8_3	PA8_6	PA8_7	PA8_9	PA8_12	PA8_14	PA8_15	PA8_16	PA8_17	PA8_19
KS 1	[M%]	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0
0/2	[M%]	2,0	5,0		5,0	3,0			5,0	5,0	5,0
2/5	[M%]					7,0		5,0	5,0		
5/8 Unterkorn	[M%]				5,0		8,0	12,0			
5/8 rein	[M%]	82,5	85,0	84,5	82,0	85,0	77,3	69,5	82,0	80,0	90,0
5/8 Überkorn	[M%]	10,5	5,0	10,5	3,0		9,7	8,5	3,0	10,0	
Summe	[M%]	100	100	100	100	100	100	100	100	100	100
Füller	[M%]	4,6	4,7	4,6	4,8	4,7	4,9	5,1	4,7	4,7	4,7
fGK	[M%]	2,3	5,1	0,4	5,3	3,8	0,6	1,2	5,5	5,1	5,1
gGK	[M%]	93,1	90,2	95,0	89,9	91,5	94,5	93,7	89,8	90,2	90,2
Bindemittel (B5)	[M%]	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5
Bindemittelträger	[M%]	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5

Tab. 21: PA8-Varianten für die Untersuchungsserie 1 (nur Diabas)

	Einheit	PA11_25	PA11_28	PA11_29	PA11_30	PA11_32	PA11_33	PA11_34	PA11_35	PA11_39	PA11_40
KS 1	[M%]	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0	5,0
0/2	[M%]	4,0		5,0			4,0	4,0	1,0	4,0	4,0
2/5	[M%]	5,0			6,0	15,0	6,0			2,0	3,0
5/8	[M%]				5,0						
8/11 Unterkorn	[M%]	8,0						5,0	3,0	3,0	
8/11 rein	[M%]	75,0	83,5	79,0	74,0	70,0	85,0	75,5	84,0	79,0	77,5
8/11 Überkorn	[M%]	3,0	11,5	11,0	10,0	10,0		10,5	7,0	7,0	10,5
Summe	[M%]	100	100	100	100	100	100	100	100	100	100
Füller	[M%]	5,0	4,6	4,7	4,6	4,7	4,7	4,8	4,7	4,8	4,7
fGK	[M%]	4,6	0,4	5,1	1,0	1,7	4,7	4,2	1,4	4,3	4,3
gGK	[M%]	90,4	95,0	90,2	94,4	93,6	90,6	91,0	93,9	90,9	90,9
Bindemittel (B5)	[M%]	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5	6,5
Bindemittelträger	[M%]	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5

Tab. 22: PA11-Varianten für Untersuchungsserie 1 (nur Diabas)

sind die ausgewählten Varianten in der Zusammensetzung mit dem Referenz-Mastix M5.3 aufgeführt.

PA8-Varianten

Die Ergebnisse der Hohlraumbestimmung, sowie der akustischen Untersuchungen sind in Tab. 23 aufgeführt. Die Differenz der Hohlraumgehalte zwischen den einzelnen Verdichtungsmethoden ist teilweise erheblich. Zum Teil sehr große Differenzen sind zwischen den gemessenen und simulierten Hohlraumgehalten festzustellen. Wie Tab. 24 zu entnehmen ist, ist die Kornform der simulierten Gesteinsverteilung sehr kubisch. Da in der Untersuchungsserie 1 die Kornform in der Mischgutzusammensetzung noch nicht näher betrachtet wird, wird die Hypothese, dass die abweichende Kornform zu den Differenzen der Hohlraumgehalte führt in der Untersuchungsserie 2 überprüft. Der Schallabsorptionsgrad der Variante PA8_15_1 konnte nicht ermittelt werden. Die Mantelflächen der Bohrkerne

wiesen eine zu hohe Bindemittelanreicherung auf, die ein Einsetzen der Bohrkerne in den Probekörperhalter verhinderte.

Variante	Hohlraum MPK	Hohlraum Modell	Hohlraum BK Ø 98 mm	Schall- absorptions- grad	Frequenz des 1. Maximums	Hohlraum BK Ø 100 mm	Strömungs- widerstand
	[Vol%]	[Vol%]	[Vol%]	[-]	[Hz]	[Vol%]	[Pa s/m]
PA8_3_1	22,9	24,8	23,0	0,78	880	25,2	224
PA8_6_1	20,4	18,9	22,5	0,92	800	22,4	693
PA8_7_1	21,9	23,0	22,6	0,82	960	24,8	172
PA8_9_1	20,3	18,1	20,1	0,73	800	21,3	1132
PA8_12_1	20,7	19,9	21,2	0,73	800	22,1	760
PA8_14_1	21,5	28,8	23,2	0,76	880	24,7	531
PA8_15_1	25,6	19,3	22,3	-	-	23,4	321
PA8_16_1	20,2	12,7	21,6	0,73	640	22,9	543
PA8_17_1	20,4	19,8	21,4	0,79	800	22,1	673
PA8_19_1	20,6	19,6	22,3	0,85	810	23,5	367

Tab. 23: Mittelwerte der PA8-Varianten - Untersuchungsserie 1

Tab. 24: Schnittbilder der simulierten Gesteinsstruktur der PA8-Varianten (Untersuchungsserie 1)

Die Ergebnisse der Hohlraumgehaltsbestimmung (siehe Bild 44) zeigen, dass die Probekörperhöhe und Beschaffenheit der Asphalt-Probekörper (raue oder glatte Flächen) einen Einfluss haben. Da die Asphalt-Probeplatten, aus denen die Bohrkerne unterschiedlichen Durchmessers gebohrt wurden, mit der gleichen Soll-Höhe (40 mm) hergestellt wurden, können die unterschiedlichen Hohlraumgehalte der Bohrkerne nicht erklärt werden. Die minimalen Abweichungen der Bohrkernhöhen stehen in keinem Zusammenhang mit den ermittelten Unterschieden der Hohlraumgehalte. So sind die Hohlraumgehalte der Bohrkerne mit einem Durchmesser von 100 mm alle höher, als die der Bohrkerne mit einem Durchmesser von 98 mm.

Die Kornverluste der Probekörper der PA8-Varianten, dargestellt in Bild 45, befinden sich auf einem niedrigen Niveau. Ein Zusammenhang zwischen dem Hohlraumgehalt der MPK und deren Kornverlust lässt sich in den hier geprüften Varianten mit einem Bestimmtheitsmaß von 0,4775 (ohne Variante PA8_15_1) nicht nachweisen (siehe Bild 46).

Bild 44: Hohlraumgehalte verschiedener PA8-Probekörper (Untersuchungsserie 1)

Bild 45: Kornverlust der PA8-Varianten (Untersuchungsserie 1)

Bild 46: Zusammenhang zwischen Hohlraumgehalt MPK und Kornverlust PL der PA8-Varianten (Hohlraumgehalt von PA8_15_1 als Ausreißer markiert)

Die MPK dreier PA8-Varianten nach der Ermittlung des Kornverlustes sind in Bild 47 dargestellt.

Bild 47: Probekörper nach der Bestimmung des Kornverlustes

In Bild 48 sind die Schallabsorptionsgrade der PA8-Varianten dargestellt. In Orange ist der brauchbare Bereich (ab 0,60) gekennzeichnet, in Gelb der gute (0,70 bis 0,80) und in Grün der sehr gute Bereich (ab 0,80) des Schallabsorptionsgrades. Sieben PA8-Varianten weisen einen guten Schallabsorptionsgrad auf, drei PA8-Varianten (6, 7 und 19) einen sehr guten.

Die spezifischen Strömungswiderstände der PA8-Varianten sind in Bild 49 dargestellt. Strömungswiderstände unter 300 Pa s/m gelten in Hinblick auf die akustische Wirksamkeit als optimal.

Die Ergebnisse zeigen eine deutlich größere Varianz, nur bei zwei PA8-Varianten (3 und 7) wurde ein Strömungswiderstand im optimalen Bereich erzielt.

Bild 48: Schallabsorptionsgrad der PA8-Varianten aus Untersuchungsserie 1

Wie Bild 48 und Bild 49 zeigen, lässt sich durch die Ermittlung der Raumdichte durch Ausmessen ein Hohlraumgehalt nachweisen der den Anforderungen entspricht, jedoch ist der Anteil der zugänglichen Hohlräume für die akustische Wirksamkeit des Offenporigen Asphaltes von höherer Bedeutung. Die vorliegenden Ergebnisse lassen den Schluss zu, dass deren Anteil nicht einhergeht mit dem ermittelten Hohlraumgehalt. Mit zunehmendem Anteil zugänglichen Hohlräumen steigt der an Schallabsorptionsgrad. Wie in Bild 48 verdeutlicht, wurde in dieser Untersuchungsreihe der höchste Schallabsorptionsgrad nicht an dem Probekörper mit dem höchsten Hohlraumgehalt ermittelt. Auch anhand des Strömungswiderstandes lässt sich ein direkter Zusammenhang zwischen gemessenem Hohlraumgehalt und Strömungswiderstand nicht nachweisen.

Bild 49: Strömungswiderstand der PA8-Varianten aus Untersuchungsserie 1

In Bild 50 ist der optimale Bereich aus den Anforderungen an den Strömungswiderstand und den Schallabsorptionsbereich in Grün dargestellt. Die Ergebnisse zweier PA8-Varianten (3 und 7) liegen in diesem optimalen Bereich, die anderen erreichen auf Grund der schlechteren Strömungswiderstände diesen Bereich nicht.

Somit scheint weniger der absolute Hohlraumgehalt, sondern eher der Anteil an durchgängig kommunizierenden Hohlräumen eine wichtige Kenngröße für die akustische Wirksamkeit zu sein.

Die PA8-Varianten 6, 7, 9 und 14 wurden für die Untersuchungsserie 2 gewählt. Die akustischen Ergebnisse der Variante 7 erreichen den optimalen Bereich. Variante 6 erreichte trotz Sandzugabe einen sehr hohen Schallabsorptionsgrad und soll trotz mittlerem Strömungswiderstand weiterhin berücksichtigt werden.

Bild 50: Zusammenhang zwischen Strömungswiderstand und Schallabsorptionsgrad PA8 (Untersuchungsserie 1)

Aufgrund der guten Hohlraumgehalte und dem guten Schallabsorptionsgrad wurde die Variante 14 ausgewählt. Um das Optimierungspotential der Kornformvariation ausreichend berücksichtigen zu können, wurde die Variante 9 gewählt. Da die Variante 3 nur durch einen sehr geringen Sandanteil von 2 M.-% von der Gesteinskörnungsvariante der Variante 7 abweicht, wird diese nicht weiter in der Untersuchungsserie 2 berücksichtigt. Somit werden zwei Varianten ohne und zwei Varianten mit feiner Gesteinskörnung weiter berücksichtigt.

PA11-Varianten

In der Tab. 25 sind die Mittelwerte der akustischen Untersuchung der PA11-Varianten aufgeführt. Die Bohrkerne wurden wie schon bei den PA8-Varianten aus Asphalt-Probeplatten gebohrt, die dieselbe Soll-Höhe (40 mm) hatten. Die minimalen Abweichungen der Bohrkernhöhen stehen in keinem Zusammenhang mit den unterschiedlichen Hohlraumgehalten. Wie Bild 51 zeigt, variieren die Hohlraumgehalte der verschiedenen PA11-Varianten deutlich mehr als die der PA8-Varianten. Auch die Hohlraumgehalte aus der Modellberechnung weisen eine größere Spannweite auf. Die Schnittbilder der simulierten Gesteinsstruktur, dargestellt in Tab. 26, wurden jeweils mittig des simulierten Probekörpers aufgezeichnet. Auch diese Schnittbilder zeigen eine hauptsächlich kubische Form der Gesteinskörnung. Die unterschiedlichen Anteile an feiner Gesteinskörnung machen einen direkten Vergleich der Schnittbilder in Hinblick auf deren Hohlraumgehalt schwierig, da die Feinanteile bei der Simulation nicht berücksichtigt werden.

Bild 51: Hohlraumgehalte verschiedener PA11-Probekörper (Untersuchungsserie 1)

Variante	Hohlraum MPK	Hohlraum Modell	Hohlraum BK Ø 98 mm	Schall- absorptions- grad	Frequenz des 1. Maximums	Hohlraum BK Ø 100 mm	Strömungs- widerstand
	[Vol%]	[Vol%]	[Vol%]	[-]	[Hz]	[Vol%]	[Pa s/m]
PA11_25_1	19,6	15,9	19,2	0,64	920	25,1	215
PA11_28_1	24,6	25,7	24,2	0,97	800	27,3	143
PA11_29_1	22,1	23,2	21,3	0,76	820	22,4	357
PA11_30_1	21,3	21,5	21,4	0,77	800	22,3	627
PA11_32_1	20,7	20,4	17,8	0,51	630	21,4	1492
PA11_33_1	19,7	26,4	19,3	0,78	800	19,9	673
PA11_34_1	21,5	22,5	20,6	0,78	800	21,3	202
PA11_35_1	23,5	38,6	21,8	0,74	800	23,7	163
PA11_39_1	21,5	25,3	25,0	0,80	980	25,2	103
PA11_40_1	21,8	25,5	20,1	0,78	800	22,7	311

Tab. 25: Mittelwerte der PA11-Varianten - Untersuchungsserie 1

Tab. 26: Schnittbilder der simulierten Gesteinsstruktur der PA11-Varianten (Untersuchungsserie 1)

Die Kornverluste der PA11-Varianten sind gegenüber den PA8-Varianten leicht höher. Ein Zusammenhang zwischen dem Hohlraum der MPK und deren Kornverlust ist nicht erkennbar (siehe Bild 52).

Bild 52: Zusammenhang zwischen Hohlraumgehalt MPK und Kornverlust PL (PA11-Varianten)

Die Schallabsorptionsgrade der PA11-Varianten zeigen große Unterschiede (siehe Bild 54). Dennoch liegen nur zwei Varianten außerhalb des guten bis sehr guten Bereichs. Ein guter Zusammenhang zwischen gemessenem Hohlraumgehalt und Schallabsorptionsgrad ist auch bei den PA11-Varianten nicht nachzuweisen.

Bild 53: Kornverlust der PA11-Variante (Untersuchungsserie 1)

Bild 54: Schallabsorptionsgrad der PA11-Varianten aus Untersuchungsserie 1

Die Ergebnisse der spezifischen Strömungswiderstände sind in Bild 55 dargestellt. Die Strömungswiderstände von fünf Varianten liegen im optimalen Bereich.

Bild 55: Strömungswiderstand der PA11-Varianten aus Untersuchungsserie 1

Bei der Betrachtung des Zusammenhangs zwischen Strömungswiderstand und Schallabsorptionsgrad zeigen vier PA11-Varianten gute akustische Eigenschaften (Variante 28, 34, 35 und 39). Die Variante 32 zeigt besonders schlechte akustische Eigenschaften.

Bild 56: Zusammenhang zwischen Schallabsorptionsgrad und Strömungswiderstand PA11 (Untersuchungsserie 1)

Die Varianten 28 und 39 wurden auf Grund ihrer sehr guten akustischen Eigenschaften zur weiteren Betrachtung für die Untersuchungsserie 2 ausgewählt. Mit der Variante 29 wurde eine PA11-Variante mit 5,0 M.-% Sandanteil berücksichtigt. Als Variante mit dem größten Optimierungspotential wurde Variante 33 gewählt, da diese den im Mittel niedrigsten gemessenen Hohlraumgehalt ausweist.

Ausgewählte Varianten mit Granit

Jeweils drei ausgewählte Varianten der PA8- und PA11-Varianten wurden mit der zweiten Gesteinsart untersucht. In der Tab. 27 sind die Ergebnisse der akustischen Untersuchungen beider Größtkorn-Varianten enthalten. Die Hohlraumgehalte der 8 mm-Größtkorn-Varianten variieren in einem Bereich von 19,2 Vol.-% bis 27,6 Vol.-%. Geringfügig niedriger ist das Niveau der Hohlraumgehalte der 11 mm-Größtkorn-Varianten. Diese liegen in einem Bereich zwischen 18,4 Vol.-% und 25,1 Vol.-%. Die grafische Darstellung der Hohlraumgehalte in Bild 57 verdeutlich diese Bandbreite.

Die PA8-Varianten erreichen sehr gute Schallabsorptionsgrade (vgl. Bild 58). Diese liegen zwischen 0,84 und 0,90, jedoch zeigt sich auch bei diesen Varianten kein Zusammenhang zwischen Schallabsorptionsgrad und Hohlraumgehalt. Die Schallabsorptionsgrade der Varianten mit dem Größtkorn von 11 mm variieren in einem Bereich zwischen 0,63 und 0,95.

Variante	Hohlraum MPK	Hohlraum BK Ø 98 mm	Schall- absorptions- grad	Frequenz des 1. Maximums	Hohlraum BK Ø 100 mm	Strömungs- widerstand
	[Vol%]	[Vol%]	[-]	[Hz]	[Vol%]	[Pa s/m]
8_6G_1	20,6	22,1	0,84	960	27,6	178
8_7G_1	19,2	25,5	0,88	860	25,9	286
8_19G_1	20,1	22,1	0,90	800	24,3	463
11_28G_1	23,7	23,4	0,95	1000	25,1	142
11_29G_1	21,2	21,6	0,83	800	21,8	282
11_32G_1	18,4	18,8	0,63	760	19,8	416

Tab. 27: Mittelwerte der PA-Varianten mit Granit - Untersuchungsserie 1

Bild 57: Hohlraumgehalte verschiedener Probekörper der Varianten mit Granit (Untersuchungsserie 1)

Aus den Ergebnissen dieser Varianten könnte ein Zusammenhang zwischen Hohlraumgehalt und Schallabsorptionsgrad abgeleitet werden. Jedoch ist der Probenumfang mit nur drei Varianten zu gering, um eine allgemeingültige Aussage zu treffen. Gleiches gilt für die Ergebnisse des Strömungswiderstandes. Auch diese zeigen in Bild 59 einen tendenziellen Einfluss des Hohlraumgehaltes auf den Strömungswiderstand. Je Größtkorndurchmesser liegt der Strömungswiderstand einer Variante nicht im optimalen Bereich, wodurch diese beiden Varianten (8_19G_1 und 11_32G_1) auch den in Bild 60 dargestellten optimalen akustischen Bereich verfehlen.

Bild 58: Schallabsorptionsgrad der PA-Varianten mit Granit - Untersuchungsserie 1

Bild 59: Strömungswiderstand der PA-Varianten mit Granit - Untersuchungsserie 1

Bild 60: Zusammenhang zwischen Strömungswiderstand und Schallabsorptionsgrad (Untersuchungsserie 1)

6.2.2 Untersuchungsserie 2

Mit den vier je Größtkorn ausgewählten Sieblinien wurde der Einfluss der Kornform auf den Hohlraumgehalt sowie auf die anderen akustisch wirksamen Größen untersucht. Bei unveränderter Zusammensetzung der Varianten wurden drei verschiedene Kornformen in den Nennkorngrößen verwendet. Untersucht wurden möglichst kubische Gesteinskörner (FI 0), eine an den Grenzen des [M OPA, 2013] orientierte Kornform (FI 10) und eine deutlich schlechtere Kornform (FI 20). Die verschiedenen Kornformen wurden durch Siebung der Gesteinskörnung über Stabsiebe entsprechend zusammengestellt.

PA8-Varianten

Die Tab. 28 enthält die Ergebnisse der akustischen Untersuchungen der Varianten mit einem Größtkorn von 8 mm.

Die Spannen der Hohlraumgehaltsunterschiede reichen von 0,8 Vol.-% bis 4,5 Vol.-%. Nur aus den Ergebnissen der Bohrkerne mit einem Durchmesser von 100 mm lässt sich ein leichter Einfluss der Kornform auf den Hohlraumgehalt ableiten. Wie die grafische Darstellung in Bild 61 zeigt, steigt der Hohlraumgehalt mit zunehmend schlechterer Kornform bei den meisten Varianten leicht an. Allgemein wird jedoch die Spanne der Hohlraumgehalte mit höherem Anteil schlecht geformter Körner größer. Der Vergleich der gemessenen Hohlraumgehalte und der Werte aus den Modellberechnungen zeigt, dass eine praxisnahe Vorhersage der Hohlraumgehalte mit der Modellberechnung noch nicht zielsicher möglich ist. Allerdings sind auch die bisherigen experimentellen Ansätze zur Ermittlung des Hohlraumgehaltes noch nicht zufriedenstellend. Die Darstellung der modellierten Hohlraumgehalte in Tab. 29 dient dem Überblick.

Variante	Hohlraum MPK	Hohlraum Modell	Hohlraum BK Ø 98 mm	Schall- absorptions- grad	Frequenz des 1. Maximums	Hohlraum BK Ø 100 mm	Strömungs- widerstand
	[Vol%]	[Vol%]	[Vol%]	[-]	[Hz]	[Vol%]	[Pa s/m]
8_6_2 (FI 0)	21,5	21,9	20,1	0,74	940	22,9	370
8_7_2 (FI 0)	24,3	23,6	23,7	0,93	1000	24,7	237
8_9_2 (FI 0)	21,1	18,8	20,6	0,96	1000	20,3	1022
8_14_2 (FI 0)	23,8	29,8	23,6	0,98	1000	24,6	288
8_6_2 (FI 10)	20,7	-	21,1	0,93	1000	22,5	567
8_7_2 (FI 10)	24,6	-	25,2	0,81	1160	26,5	310
8_9_2 (FI 10)	21,1	-	22,8	0,80	1060	23,0	457
8_14_2 (FI 10)	22,7	-	24,4	0,94	1240	24,6	340
8_6_2 (FI 20)	20,9	-	22,3	0,80	1080	24,3	442
8_7_2 (FI 20)	23,2	-	24,7	0,90	1000	26,6	269
8_9_2 (FI 20)	19,8	-	21,5	0,89	1000	22,9	650
8_14_2 (FI 20)	21,8	-	24,2	0,97	1000	26,4	276

Tab. 28: Mittelwerte der PA8-Varianten - Untersuchungsserie 2

Tab. 29: Schnittbilder der simulierten Gesteinsstruktur der PA8-Varianten (Untersuchungsserie 2)

Bild 61: Hohlraumgehalte verschiedener PA8-Probekörper (Untersuchungsserie 2)

Die grafische Darstellung der Kornverluste in Bild 62 zeigt im Vergleich zu den Ergebnissen der Untersuchungsserie 1 eine geringfügige Erhöhung der Verlustanteile. Weder die Kornform noch der Hohlraumgehalt zeigen einen eindeutigen Einfluss auf den Kornverlust der Probekörper aus Offenporigem Asphalt mit einem Größtkorn von 8 mm.

Die Schallabsorptionsgrade erreichen mit wenigen Ausnahmen und unabhängig von der Kornform den optimalen Bereich von größer 0,80 (vgl. Bild 63). Die Variante 8_14_2 erreicht je Kornformvariation den höchsten Schallabsorptionsgrad.

Bild 62: Kornverlust der PA8-Varianten (Untersuchungsserie 2)

Bild 63: Schallabsorptionsgrad der PA8-Varainten aus Untersuchungsserie 2

Die Strömungswiderstände der Varianten mit einem Größtkorn von 8 mm sind grafisch in Bild 64 dargestellt. Aus den Ergebnissen lässt sich je Kornformvariante ein Zusammenhang zwischen Hohlraumgehalt und Strömungswiderstand ableiten. Je größer der Hohlraumgehalt ist, desto niedriger wird der Strömungswiderstand. Unabhängig von der Kornformvariante wurden bei der Variante 8_7_2 die niedrigsten Strömungswiderstände gemessen, wobei die Ergebnisse der Variante 8_14_2 nur geringfügig höher ausfallen.

Bild 64: Strömungswiderstand der PA8-Varianten aus Untersuchungsserie 2

Aus der Darstellung des Strömungswiderstandes gegen den Schallabsorptionsgrad können vier Varianten ausgemacht werden, die den optimalen akustischen Bereich erreichen (vgl. Bild 65). Dies sind die Varianten 8_7_2 und 8_14_2 mit jeweils der Kornform FI 0 und FI 20. Die Varianten mit der Kornform FI 10 liegen gerade an der Grenze des optimalen Bereichs. Da mit diesen Varianten ein höherer Hohlraumgehalt realisiert werden konnte, finden diese weiter Berücksichtigung bei der Auswahl einer Sieblinie für die Untersuchungsserie 3. Die Variante 8_14_2 weist einen geringen Unterkornanteil auf, wodurch sie vermutlich praxisnaher gegenüber der Variante 8_7_2 ist. Aus diesem Grund wird für die Untersuchungsserie 3 die Varianten 8_14_2 mit der Kornform FI 10 gewählt.

Bild 65: Zusammenhang zwischen Strömungswiderstand und Schallabsorptionsgrad PA8 (Untersuchungsserie 2)

PA 11-Varianten

In der Tab. 30 sind die Ergebnisse der akustischen Untersuchungen zusammengefasst. Die Hohlraumgehalte weisen Spannen von 0,8 Vol.-% bis 5,6 Vol.-% innerhalb der einzelnen Varianten auf. Die grafische Darstellung der Hohlraumgehalte in Bild 66 verdeutlich, dass bei den Varianten mit einem Größtkorn von 11 mm der Einfluss der Kornform auf den Hohlraumgehalt stark variiert. Daher ist ein eindeutiger Zusammenhang zwischen Kornform und Hohlraumgehalt hier nicht feststellbar ist.

Mit der Modellberechnung lassen sich auch mit einem Größtkorn von 11 mm die Hohlraumgehalte der PA-Varianten mit kubischer Kornform nicht besser vorhersagen, als in der Untersuchungsserie 1. Die Schnittbilder der simulierten Gesteinsstrukturen zeigen jedoch noch einmal deutlich, dass in der Modellberechnung hauptsächlich die groben, kubischen Kornformen Berücksichtigung finden (siehe Tab. 31). Somit ist die Modellberechnung in dieser Form noch nicht zielführend.

Variante	Hohlraum MPK	Hohlraum Modell	Hohlraum BK Ø 98 mm	Schall- absorptions- grad	Frequenz des 1. Maximums	Hohlraum BK Ø 100 mm	Strömungs- widerstand
	[Vol%]	[Vol%]	[Vol%]	[-]	[Hz]	[Vol%]	[Pa s/m]
11_28_2 (FI 0)	23,7	27,0	21,8	0,89	1000	21,1	125
11_29_2 (FI 0)	20,9	23,9	19,4	0,78	820	21,4	231
11_33_2 (FI 0)	21,7	26,1	17,0	0,80	800	22,5	374
11_39_2 (FI 0)	21,7	24,4	18,7	0,80	1000	21,5	311
11_28_2 (FI 10)	25,0	-	22,1	0,76	1080	25,4	87
11_29_2 (FI 10)	20,4	-	18,5	0,76	1000	22,8	149
11_33_2 (FI 10)	20,2	-	20,2	0,86	1000	21,0	335
11_39_2 (FI 10)	21,2	-	19,2	0,95	1000	23,0	269
11_28_2 (FI 20)	23,0	-	23,0	0,92	1000	21,7	93
11_29_2 (FI 20)	21,0	-	18,9	0,85	1020	24,5	196
11_33_2 (FI 20)	21,1	-	18,3	0,73	1000	20,7	399
11_39_2 (FI 20)	21,8	-	19,6	0,89	1000	21,5	186

Tab. 30: Mittelwerte der PA11-Varianten - Untersuchungsserie 2

Tab. 31: Schnittbilder der simulierten Gesteinsstruktur der PA11-Varianten (Untersuchungsserie 2)

Bild 66: Hohlraumgehalte verschiedener PA11-Varianten (Untersuchungsserie 2)

Die Kornverluste der Varianten mit einem Größtkorn von 11 mm sind gegenüber der Untersuchungsserie 1 gestiegen. Die Kornverluste der Variante 11_28 sind um das doppelte angestiegen, während die Kornverluste der Variante 11_33 nahezu unverändert sind. Einflüsse der Kornform auf den Kornverlust sind nicht nachweisbar (siehe Bild 67).

Bild 67: Kornverlust der PA11-Varianten (Untersuchungsserie 2)

Wie Bild 68 verdeutlicht, liegen die berechneten Schallabsorptionsgrade der PA11-Varianten in guten bis sehr guten Bereich. Variante 11_28_2 erreicht mit der Kornform FI 0 und FI 20 den jeweils höchsten Schallabsorptionsgrad verglichen mit den anderen Varianten. Den absolut höchsten Schallabsorptionswert von 0,95 erzielt in dieser Untersuchungsserie die Variante 11_39_2 mit der Kornform FI 10. Ein eindeutiger Zusammenhang zwischen Hohlraumgehalt und Schallabsorptionsgrad ist nicht erkennbar.

Bild 68: Schallabsorptionsgrad der PA11-Varianten (Untersuchungsserie 2)

Die Strömungswiderstände der PA11-Varianten dieser Untersuchungsserie liegen mit wenigen Ausnahmen in dem optimalen Bereich (vgl. Bild 69). Je Kornformvariante wurden bei der Variante 11_28_2 die niedrigsten Strömungswiderstände gemessen, den niedrigsten mit 87 Pa s/m bei der Kornformvariante FI 10.

Die Darstellung des Zusammenhangs zwischen Strömungswiderstand und Schallabsorptionsgrad (siehe Bild 70) zeigt, dass zwei Drittel der Varianten gute akustische Eigenschaften aufweisen. Auf Grundlage der vorliegenden Ergebnisse wurde die Variante 11_28_2 mit der Kornform FI 20 für die weiteren Variationen der Untersuchungsserie 3 ausgewählt.

Bild 70: Zusammenhang zwischen Strömungswiderstand und Schallabsorptionsgrad PA11 (Untersuchungsserie 2)

6.2.3 Untersuchungsserie 3

Für die Untersuchung des Mastixeinflusses auf den Hohlraumgehalt und die akustischen Eigenschaften eines Offenporigen Asphaltes mit Größtkorn 8 mm wurde die Variante 8_14_2 mit der Kornform FI 10 und für einen Offenporigen Asphalt mit Größtkorn 11 mm die Variante 11_28_2 mit der Kornform FI 20 gewählt. Auf die Ermittlung der Hohlraumgehalte mittels computerbasierter Modellberechnung wurde ausgehend von den Ergebnissen der zweiten Untersuchungsserie verzichtet.

	Hohlraum	Hohlraum	Schall-	Frequenz	Hohlraum	Strömungs-
Variante	MDK	BK	absorptions-	des 1.	BK	widerstand
		Ø 98 mm	grad	Maximums	Ø 100 mm	widerstand
	[Vol%]	[Vol%]	[-]	[Hz]	[Vol%]	[Pa s/m]
8_14_3_M1.1	24,5	25,0	0,99	1000	25,2	394
8_14_3_M1.2	24,1	24,7	0,86	980	23,9	410
8_14_3_M3.1	24,0	24,5	0,86	980	25,7	295
8_14_3_M3.2	24,0	23,7	0,91	1010	24,7	300
8_14_3_M4.1	23,0	24,5	0,96	1000	25,1	275
8_14_3_M4.2	23,2	24,1	0,81	920	24,7	278
8_14_3_M5.1	22,9	22,8	0,92	1000	26,2	235
8_14_3_M5.2	23,9	23,0	0,96	1000	25,8	258
8_14_3_M6.1	24,9	22,9	0,90	1000	25,1	315
8_14_3_M6.2	24,8	23,0	0,88	1000	24,0	421
8_14_3_M7.1	23,9	25,9	0,94	1000	27,7	442
8_14_3_M7.2	23,4	25,4	0,86	1040	26,9	469
8_14_3_M8.1	23,9	25,0	0,92	1010	26,4	354
8_14_3_M8.2	24,4	24,0	0,91	1020	25,7	354
8_14_3_M9.1	24,6	26,9	0,88	1060	29,5	446
8_14_3_M9.2	25,0	26,7	0,82	980	29,0	494

Tab. 32: Mittelwerte der PA8-Varianten - Untersuchungsserie 3

PA 8-Varianten

Die Sieblinie des PA8_14_3 wurde mit 16 Mastixvarianten aus den Voruntersuchungen realisiert. Die Mittelwerte der akustischen Untersuchungen sind in Tab. 32 enthalten.

Die Zusammensetzung des Mastix hat auf den Hohlraumgehalt nur einen geringfügigen Einfluss (siehe Bild 71). Die Spanne über alle Probekörper reicht von 22,8 Vol.-% bis 29,5 Vol.-%.

Bild 71: Hohlraumgehalte der Variante PA8_14 mit verschiedenen Mastixvarianten

Die grafische Darstellung der Kornverluste nach [TP Asphalt-StB, Teil 17, 2007] zeigt größere Differenzen zwischen den einzelnen Varianten (vgl. Bild 72). Die Varianten mit RmB (dargestellt in Rot/Orange) haben einen deutlich höheren Kornverlust als die Varianten mit PmB (in Blautönen abgebildet). Ebenso zeigen die Mastixzusammensetzungen mit der Füllervariante 2 (MBm.2) tendenziell, mit wenigen Ausnahmen, geringfügig höhere Kornverluste. Daraus lässt sich schließen, dass die Verwendung eines Mischfüllers höhere Steifigkeiten des haltenden Mastixgerüstes bewirkt, die wiederum einen negativen Einfluss auf den Kornverlust haben.

Ein Vergleich der Kornverluste nach [TP Asphalt-StB, Teil 17, 2007] mit den Komplexen Schermoduln G* der Mastixvarianten zeigt bei der Prüftemperatur von 20 °C einen brauchbaren Zusammenhang (vgl. Bild 73). Die Mastixvarianten mit dem Bindemittel B9 (M9.X) werden als Ausreißer betrachtet und sind in der grafischen Darstellung separat gekennzeichnet.

Bild 72: Kornverlust der PA8-Variante 14 mit verschiedenen Mastixvarianten

Die drei RmB-Varianten sowie die Mastixvarianten mit dem Bindemittel 1 (M1.X) liegen außerhalb der optimalen Bereiche, da deren Mastixsteifigkeiten demnach zu hoch sind um das Korngerüst der MPK bei den Prüfbelastungen nach [TP Asphalt-StB, Teil 17, 2007] ausreichend zu stützen. Zusätzlich zu der Standardfrequenz von 1,59 Hz bei DSR-Untersuchungen sind die Ergebnisse der Frequenz von 10 Hz dargestellt. Diese wurden zum Vergleich mit der schlagenden, impulsartigen Verdichtung der MPK gewählt.

In Bild 74 ist der Zusammenhang zwischen den Kornverlusten PL und den Phasenwinkeln der Mastixvarianten bei 20 °C dargestellt. Mit einem Bestimmtheitsmaß von 0,70 (bei 1,59 Hz) beziehungsweise 0,76 (bei 10 Hz) kann auch dieser Zusammenhang als brauchbar beschrieben werden.

Bild 73: Zusammenhang zwischen Kornverlust PL und Kompl. Schermodul G* der Mastixvarianten bei T = 20 °C

Bild 74: Zusammenhang zwischen Kornverlust PL und Phasenwinkel der Mastixvarianten bei T = 20 °C

Die drei RmB-Varianten erreichen nicht den optimalen Bereich, ebenso wie bei 1,59 Hz die Variante M4.2. Deren Phasenwinkel ist um 1° zu gering, jedoch liegt der Komplexe Schermodul unter der Grenze von 8,0 kPa. Somit lässt sich diese Variante nicht eindeutig dem optimalen Bereich zuordnen.

Die Schallabsorptionsgrade der Offenporigen Asphaltvarianten mit dem Größtkorn von 8 mm, dargestellt in Bild 75, liegen alle im sehr guten Bereich. Die Spanne reicht von 0,81 (Variante 8 14 3 M4.2) bis 0,99 (Variante 8 14 3 M1.1). Tendenziell wurden mit den Mastixvarianten mit der Füllervariante 1 (MX.1) geringfügig höhere Schallabsorptionsgrade erzielt, als mit den Mastixvarianten mit der Füllervariante 2 (MX.2). Aufgrund der gleichen Sieblinie aller Varianten und der dadurch erwartungsgemäß ähnlichen Hohlraumgehalte, ist keine Beurteilung des Zusammenhangs zwischen Hohlraumgehalt und Schallabsorptionsgrad möglich.

Bild 75: Schallabsorptionsgrad der PA8-Varianten aus Untersuchungsserie 3

Die Strömungswiderstände der PA8-Varianten sind in Bild 76 dargestellt. Sie variieren zwischen 235 Pa s/m und 494 Pa s/m. Die Varianz der Ergebnisse fällt im Vergleich zu den vorherigen Untersuchungsreihen deutlich geringer aus. Nur die Varianten mit den Bindemitteln B3, B4 und B5 (M3.X, M4.X und M5.X) erzielen Strömungswiderstände im akustisch optimalen Bereich kleiner 300 Pa s/m.

Bild 76: Strömungswiderstand der PA8-Varainten aus Untersuchungsserie 3

Die Darstellung des Strömungswiderstandes gegen den Schallabsorptionsgrad in Bild 77 zeigt, dass sechs Varianten den akustisch optimalen Bereich erreichen. Auf Grund der guten Strömungswiderstände handelt es sich ebenfalls um die Varianten mit den Bindemitteln B3, B4 und B5 (M3.X, M4.X und M5.X).

Bild 77: Zusammenhang zwischen Strömungswiderstand und Schallabsorptionsgrad PA8 (Untersuchungsserie 3)

Variante	Hohlraum MPK	Hohlraum BK Ø 98 mm	Schall- absorptions- grad	Frequenz des 1. Maximums	Hohlraum BK Ø 100 mm	Strömungs- widerstand
	[Vol%]	[Vol%]	[-]	[Hz]	[Vol%]	[Pa s/m]
11_28_3_M3.1	25,0	24,5	0,77	1000	26,1	172
11_28_3_M3.2	24,1	24,6	0,87	980	26,6	181
11_28_3_M9.1	23,7	25,3	0,85	1000	24,2	147
11_28_3_M9.2	24,8	27,3	0,95	1020	26,5	239

Tab. 33: Mittelwerte der PA11-Varianten - Untersuchungsserie 3

PA11-Varianten

Die vier PA11-Varianten wurden mit der Sieblinie 11_28_3 und verschiedenen Mastixvarianten realisiert. Die Mittelwerte der akustischen Untersuchungsergebnisse sind in Tab. 33 dargestellt. Die Hohlraumgehalte der Varianten mit Bindemittel B3 (M3.X) weisen eine Spanne von 1,6 Vol.-% innerhalb der jeweiligen Variante auf, während die Spanne der Varianten mit Bindemittel B9 (M9.X) bei 2,5 Vol.-% liegt. Bild 78 veranschaulicht die geringen Varianzen der Hohlraumgehalte.

Bild 78: Hohlraumgehalte der Varianten PA11_28 mit verschiedenen Mastixvarianten

Die Kornverluste PL nach [TP Asphalt-StB, Teil 17, 2007] der Varianten mit einem Größtkorn von 11 mm (siehe Bild 79) sind erwartungsgemäß höher gegenüber den PA8-Varianten. Die in [FE 07.0222/2007/ARB, 2013] eindeutig belegte Abhängigkeit des Größtkorns auf den Kornverlust, konnte in der vorliegenden Forschungsarbeit nicht hinreichend bestätigt werden. Auf die Überprüfung eines Zusammenhangs zwischen den Mastixsteifigkeiten und der Kornverluste wurde aufgrund der wenigen Varianten verzichtet.

Bild 79: Kornverlust der Varianten PA11_28 mit verschiedenen Mastixvarianten

Die grafische Darstellung der Schallabsorptionsgrade in Bild 80 zeigt, dass die Varianten mit der Füllervariante 2 (MX.2) in diesem Fall bessere Ergebnisse aufweisen, als die Varianten mit der Füllervariante 1 (MX.1). Die Ergebnisse der Strömungswiderstandsermittlung sind hier nicht so eindeutig (vgl. Bild 81). Alle Varianten erzielen jedoch einen Strömungswiderstand unterhalb der 300 Pa s/m.

Bild 80: Schallabsorptionsgrad der PA11-Varianten aus Untersuchungsserie 3

Bild 81: Strömungswiderstand der PA11-Varianten aus Untersuchungsserie 3

Wie Bild 82 veranschaulicht, liegen alle Varianten im akustisch guten Bereich.

Bild 82: Zusammenhang zwischen Strömungswiderstand und Schallabsorptionsgrad PA11 (Untersuchungsserie 3)

Auswahl der Mastixvarianten für die abschließenden Asphaltuntersuchungen

Zur Auswahl der Mastixvarianten für die abschließenden Asphaltuntersuchungen wurden die Ergebnisse der vorangegangenen Untersuchungsserien und Voruntersuchungen berücksichtigt. Anhand der Phasenwinkel aus den DSR-Ergebnissen und der Temperatur bei einer Biegekriechsteifigkeit von 300 MPa wurden die Bitumen im frischen und gealterten Zustand beurteilt. Die Mastixvarianten wurden auf Grundlage der im DSR gemessenen Phasenwinkel bei unterschiedlichen Temperaturen und Frequenzen bewertet. Die Ergebnisse des Kornverlustes PL wurden ebenfalls berücksichtigt. Die Mastixvarianten mit der Füllervariante 2 (MX.2) wurden auf Grundlage der Ergebnisse der Untersuchungsserie 3 nicht bewertet.

In Tab. 34 sind die Ergebnisse aufgeführt, die zur Auswahl des Polymermodifizierten Bitumens führten. Durch die Bewertung dieser Ergebnisse wurde ein Ranking gebildet, wodurch das Polymermodifizierte Bitumen B3 für die abschließenden Asphaltuntersuchungen ausgewählt werden konnte. Die Tab. 35 enthält die Ergebnisse, die zur Auswahl des Gummimodifizierten Bitumen berücksichtigt wurden. Die Ergebnisse wurden nach dem gleichen Prinzip bewertet wie die der Polymermodifizierten Bitumen, wodurch im Gesamtranking das Gummimodifizierte Bitumen B9 als beste Option für die weitergehenden Asphaltuntersuchungen ermittelt wurde.

Material	Untersuchung	Kennwert	Einheit	B1	B2	В3	B4	B5	B6
BM	DSR	Phasenwinkel	[°]	20,5	21,2	23,3	24,2	24,4	21,4
frisch	1,59 Hz, -10°C	Rang	[-]	6	5	3	2	1	4
BM	DSR	Phasenwinkel	[°]	16,9	17,2	17,6	19,1	21,5	17,7
RTFOT+PAV	1,59 Hz, -10°C	Rang	[-]	6	5	4	2	1	3
BM	DSR	δ bei EG* _{15kPa} T	[°]	63,5	54,9	56,6	61,3	61,7	65,3
frisch	1,59 Hz	Rang	[-]	5	1	2	3	4	6
BM	DSR	δ bei EG* _{15kPa} T	[°]	56,7	54,5	52,8	56,3	58,9	60,9
RTFOT+PAV	1,59 Hz	Rang	[-]	4	2	1	3	5	6
BM	BBR	T bei s = 300	[°C]	-20,0	-20,1	-22,6	-23,7	-24,1	-20,3
frisch	BBR	Rang	[-]	6	5	3	2	1	4
BM	BBR	T bei s = 300	[°C]	-16,8	-18,1	-	-20,1	-22,0	-17,7
RTFOT+PAV	BBR	Rang	[-]	5	3	3	2	1	4
Mastix mit Füllervariante 1	DSR	Phasenwinkel	[°]	20,5	18,8	22,7	20,4	19,0	18,8
(MX.1)	1,59 Hz, -10 °C	Rang	[-]	2	5	1	3	4	5
Mastix mit Füllervariante 1	DSR	Phasenwinkel	[°]	28,6	28,1	29,9	28,2	25,6	26,1
(MX.1)	0,1 Hz, -10 °C	Rang	[-]	2	4	1	3	6	5
Mastix mit Füllervariante 1	DSR	Phasenwinkel	[°]	48,7	42,0	54,1	49,5	55,9	60,8
(MX.1)	1,59 Hz, 20 °C	Rang	[-]	5	6	3	4	2	1
Mastix mit Füllervariante 1	DSR	Phasenwinkel	[°]	44,0	39,6	49,7	46,3	50,2	55,1
(MX.1)	10 Hz, 20 °C	Rang	[-]	5	6	3	4	2	1
8 14 3 MX 1	"Cantabro"	Kornverlust PL	[M%]	8,9	-	5,0	6,8	4,2	4,3
<u> </u>	,,	Rang	[-]	5	3	3	4	1	2
		Ranking	[-]	6	5	1	3	2	4

Tab. 34: Auswahlmatrix der Polymermodifizierten Bitumen

Material	Untersuchung	Kennwert	Einheit	B7	B8	В9
ВМ	DSR	Phasenwinkel	[°]	19,7	21,4	23,6
frisch	1,59 Hz, -10°C	Rang	[-]	3	2	1
ВМ	DSR	Phasenwinkel	[°]	17,4	17,9	20,1
RTFOT+PAV	1,59 Hz, -10°C	Rang	[-]	3	2	1
BM	DSR	δ bei EG* _{15kPa} T	[°]	55,5	61,4	68,6
frisch	1,59 Hz	Rang	[-]	1	2	3
BM	DSR	δ bei EG* _{15kPa} T	[°]	53,8	63,8	68,3
RTFOT+PAV	1,59 Hz	Rang	[-]	1	2	3
BM	BBR	T bei s = 300	[°C]	-21,6	-20,9	-22,9
frisch	BBR	Rang	[-]	2	3	1
BM	BBR	T bei s = 300	[°C]	-20,0	-18,6	-19,9
RTFOT+PAV	BBR	Rang	[-]	1	3	2
Mastix mit Füllervariante 1	DSR	Phasenwinkel	[°]	17,1	18,4	21,2
(MX.1)	1,59 Hz, -10 °C	Rang	[-]	3	2	1
Mastix mit Füllervariante 1	DSR	Phasenwinkel	[°]	23,2	25,0	27,6
(MX.1)	0,1 Hz, -10 °C	Rang	[-]	3	2	1
Mastix mit Füllervariante 1	DSR	Phasenwinkel	[°]	43,5	45,3	45,7
(MX.1)	1,59 Hz, 20 °C	Rang	[-]	3	2	1
Mastix mit Füllervariante 1	DSR	Phasenwinkel	[°]	39,4	40,8	41,6
(MX.1)	10 Hz, 20 °C	Rang	[-]	3	2	1
8 14 3 MX 1	"Cantabro"	Kornverlust PL	[M%]	12,8	12,2	17,5
<u> </u>	"canabio	Rang	[-]	2	1	3
		Ranking	[-]	3	2	1

Tab. 35: Auswahlmatrix der Gummimodifizierten Bitumen

6.3 Abschließende Asphaltuntersuchungen

Für die abschließenden Asphaltuntersuchungen (Untersuchungsserie 4) wurden drei Gesteinskörnungsvarianten mit einem Größtkorn von 8 mm und eine Gesteinskörnungsvariante mit einem Größtkorn von 11 mm gewählt. Realisiert wurden die in Tab. 36 aufgeführten Varianten jeweils mit den Mastixvarianten M3.1 und M9.1.

Varianta	Gesteinsart				
vanante	Diabas	Granit			
PA8_6	Х				
PA8_14	х	х			
PA11_28	Х				

 Tab. 36:
 Variantenmatrix der abschließenden Asphaltuntersuchungen

Akustische Eigenschaften

Die Ergebnisse der akustischen Untersuchungen, aufgeführt in Tab. 37, weisen auf ein differenziertes Verhalten der verschiedenen Bindemittel hin. Die Hohlraumgehalte der Varianten mit B3 weichen um weniger als 3,0 Vol.-% innerhalb einer Variante ab, während die Spanne der Hohlraumgehalte der Varianten mit B9 stets über 3,0 Vol.-% hinausgeht. Die grafische Darstellung der Hohlraumgehalte in Bild 83 verdeutlicht die Varianz der Hohlraumgehalte. Tendenziell wurden mit dem Mastix M9.1 geringfügig höhere Hohlraumgehalte erzielt, jedoch führt die Verwendung dieses Bindemittels zu deutlich höheren Kornverlusten (vgl. Bild 84). Die Zugabe eines Sandanteils von 5,0 M.-%, wie bei der Variante PA8 6, zeigt keinen nachweisbaren Einfluss auf den Kornverlust. Die Kornverluste unterscheiden sich nur geringfügig von denen der Variante PA8 14 ohne Sandanteil.

Bild 83: Hohlraumgehalte der verschiedenen PA-Varianten (Untersuchungsserie 4)

Die Schallabsorptionsgrade der verschiedenen PA-Varianten liegen im guten bis sehr guten Bereich (s. Bild 85). Ein Vergleich der Mastixvarianten zeigt, dass mit den M9.1-Varianten größtenteils deutliche bessere Schallabsorptionsgerade erzielt wurden. Ebenso zeigt sich in dieser Untersuchungsserie ein Zusammenhang zwischen dem Schallabsorptionsgrad und der Frequenz des 1. Maximums. Die Schallabsorptionsgrade über 0,90 wurden bei einer Frequenz von 1000 Hz oder höher gemessen, während die niedrigeren Schallabsorptionsgrade mit einer Ausnahme bei 820 Hz oder geringerer Frequenz ermittelt wurden (vgl. Tab. 37). Die Zusammensetzung der Gesteinskörnung zeigt keinen eindeutigen Einfluss auf den Schallabsorptionsgrad.

Bild 84: Kornverlust PL der verschiedenen PA-Varianten (Untersuchungsserie 4)

<u> </u>						
Variante	Hohlraum MPK	Hohlraum BK Ø 98 mm	Schall- absorptions- grad	Frequenz des 1. Maximums	Hohlraum BK Ø 100 mm	Strömungs- widerstand
	[Vol%]	[Vol%]	[-]	[Hz]	[Vol%]	[Pa s/m]
8_6_4_M3.1	21,0	21,1	0,84	820	23,7	692
8_6_4_M9.1	21,0	24,1	0,93	1000	24,4	609
8_14_4_M3.1	23,9	21,4	0,84	820	23,8	579
8_14_4_M9.1	23,6	21,1	0,92	1000	26,0	470
8_14G_4_M3.1	22,1	22,8	0,71	800	22,3	914
8_14G_4_M9.1	19,7	21,9	0,97	1000	24,2	708
11_28_4_M3.1	25,0	24,7	0,79	950	26,0	181
11_28_4_M9.1	24,1	25,4	0,94	1020	27,5	204

Tab. 37: Mittelwerte der akustischen Eigenschaften - Untersuchungsserie 4

Wie Bild 86 veranschaulicht, erreichen nur die Strömungswiderstände der zwei PA11-Varianten den guten Bereich. Wieder wurden mit den M9.1-Varianten bessere Ergebnisse erzielt als mit den M3.1-Varianten, mit Ausnahme der Varianten mit einem Größtkorn von 11 mm. Des Weiteren zeigt sich ein Einfluss der Gesteinsart auf den Strömungswiderstand. Nur die Wahl einer anderen Gesteinsart bewirkt eine deutliche Veränderung des Strömungswiderstandes ($\Delta > 200$ Pa s/m). Der Sandanteil in Variante PA8_6 führt zwar zu hohen Strömungswiderständen, verglichen mit den anderen PA8-Varianten dieser Untersuchungsserie liegen die Strömungswiderstände jedoch im mittleren Bereich.

Bild 85: Schallabsorptionsgrad der verschiedenen PA-Varianten (Untersuchungsserie 4)

Aus der grafischen Darstellung der Strömungswiderstände der PA8-Varianten in Bild 86 ist trotz des kleinen Probenumfangs ein Zusammenhang zwischen Strömungswiderstand und Hohlraumgehalt erkennbar. Mit zunehmendem Hohlraumgehalt wurden bessere Strömungswiderstände erzielt.

Bild 86: Strömungswiderstand der verschiedenen PA-Varianten (Untersuchungsserie 4)

Bei unveränderter Zusammensetzung weichen die Strömungswiderstände der Asphalt-Varianten mit der Füllervariante 1 (PA8_14_4_MX.1) von denen der Untersuchungsserie 3, bedingt durch den niedrigeren Hohlraumgehalt, zum Teil deutlich ab. Die Varianz der PA11-Varianten ist bedeutend geringer.

Bild 87: Zusammenhang zwischen Strömungswiderstand und Schallabsorptionsgrad (Untersuchungsserie 4)

Die computertomografischen Untersuchungen zur Ermittlung der inneren Hohlraumstruktur wurden je Asphaltvariante an einem Bohrkern durchgeführt. Erfasst wurde dabei mit einem Durchmesser von 43,35 mm und einer Höhe von 43,35 mm nur ein innenliegender Teilbereich jedes Bohrkerns, da so mit der Scan-Auflösung eine gute Qualität sichergestellt werden konnte.

Bild 88: Beispielhafte Darstellung eines CT-Bildes eines untersuchten Bohrkerns

Eine beispielhafte Darstellung eines unbearbeiteten CT-Bildes eines untersuchten Bohrkerns ist in Bild 88 abgebildet. In Dunkelgrau sind die Hohlräume erkennbar, die Mastixphase ist in einem etwas helleren Dunkelgrau dargestellt und die Gesteinskörnung in hellen Grautönen. Die Grauwertverteilung in Bild 89 veranschaulichen die Grauwerte der drei Phasen des Asphalt-Probekörpers. Der linke Peak repräsentiert die Hohlraumanteile, der mittlere die Mastixphase und der rechte Peak die Gesteinsanteile.

Bild 89: Grauwertverteilung eines CT-Scans

Bild 90: BK 8_14_4_M3.1 mit einem Hohlraum von V = 25,2 Vol.-%

Bild 91: BK 8_14_4_M9.1 mit einem Hohlraum von V = 24,0 Vol.-%

Bild 92: BK 8_6_4_M3.1 mit einem Hohlraum von V = 21,0 Vol.-%

Bild 93: BK 8_6_4_M9.1 mit einem Hohlraum von V = 24,2 Vol.-%

Bild 94: BK 8_14G_4_M3.1 mit einem Hohlraumgehalt von V = 22,4 Vol.-%

Bild 95: BK 8_14G_4_M9.1 mit einem Hohlraumgehalt von V = 25,3 Vol.-%

Bild 96: BK 11_28_4_M3.1 mit einem Hohlraum von V = 27,1 Vol.-%

Bild 97: BK 11_28_4_M9.1 mit einem Hohlraum von V = 27,9 Vol.-%

	Н	Hohlraumgehalt [Vol%]						
	gemessen am BK	aus CT-Scan	Δ					
BK 8_6_4_M3.1	23,7	21,0	2,7					
BK 8_6_4_M9.1	24,4	24,2	0,2					
BK 8_14_4_M3.1	23,8	25,2	1,4					
BK 8_14_4_M9.1	26,0	24,0	2,0					
BK 8_14G_4_M3.1	22,3	22,4	0,1					
BK 8_14G_4_M9.1	24,2	25,3	1,1					
BK 11_28_4_M3.1	26,0	27,1	1,1					
BK 11_28_4_M9.1	27,5	27,9	0,4					

 Tab. 38: Hohlraumgehalte der Bohrkerne aus der Untersuchungsserie 4

Zur Analyse der Hohlraumstruktur wurden die CT-Bilder weiter bearbeitet. Durch die Auswahl und Separierung der Grauwerte wurde die Hohlraumstruktur daher in Hellgrau/Weiß dargestellt. Die Hohlraumgehalte wurden dann anhand der Grauwerthäufigkeiten in den Histogrammen ermittelt. In Bild 90 bis Bild 97 sind die bearbeiteten Bohrkernaufnahmen (links) und die separierte Hohlraumstruktur (rechts) dargestellt.

Bei der Bestimmung der Hohlraumraumgehalte der CT-Scans wurde nur ein innenliegender Teilbereich der Bohrkerne berücksichtigt, wodurch der Textureinfluss entfiel. Die errechneten Hohlraumgehalte der CT-Scans weichen leicht von den am Bohrkern durch Ausmessen ermittelten Hohlraumgehalten ab (siehe Tab. 38), mit einer Standardabweichung von 0,85 Vol.-% wurde dennoch eine gute Übereinstimmung erzielt. Aufgrund der 2D-Darstellung der 3D-Hohlraumstruktur, sind die kommunizierenden Hohlräume nicht gut visualisierbar.

Nutzungsverhalten

Das Nutzungsverhalten der acht PA-Varianten wurde mittels DSD-Prüfgerät überprüft. Dazu wurden je Variante zwei Asphalt-Probeplatten mittels BAV gealtert und anschließend an den Asphalt-Probeplatten der Frost-Tausalz-Widerstand ermittelt. Diese Asphalt-Probeplatten, gekennzeichnet mit dem Kürzel "beh.", und zwei jeweils nicht gealterte und beanspruchte Asphalt-Probeplatten wurden auf ihren Widerstand gegen Oberflächenverschleiß geprüft.

Varianto	Massev	/erlust
Variante	[M%]	[g/m²]
8_6_4_M3.1	0,58	2.936
8_6_4_M3.1 beh.	0,64	3.307
8_6_4_M9.1	5,30	27.164
8_6_4_M9.1 beh.	3,88	19.423
8_14_4_M3.1	0,95	4.766
8_14_4_M3.1 beh.	0,41	2.104
8_14_4_M9.1	6,27	31.211
8_14_4_M9.1 beh.	3,19	15.822
8_14G_4_M3.1	0,46	2.181
8_14G_4_M3.1 beh.	0,28	1.323
8_14G_4_M9.1	3,97	18.794
8_14G_4_M9.1 beh.	3,48	16.165

Tab. 39: Masseverlust nach OVP der PA8-Varianten

Die Masseverluste in der PA8-Varianten nach der Oberflächenverschleißprüfung (OVP) sind in der Tab. 39 in M.-% und g/m² aufgeführt. Die Darstellung der absoluten Masseverluste der M3.1-Varianten in Bild 98 und der M9.1-Varianten in Bild 99 dient zur besseren Veranschaulichung der Ergebnisse.

Mit Ausnahme der Variante 8_6_4_M3.1 wurden nach der Alterung und den Frost-Tau-Wechseln geringere Masseverluste gemessen. Die Konditionierung der Asphalt-Probeplatten bewirkt somit einen höheren Widerstand gegen Oberflächenverschleiß, der so nicht erwartet wurde.

Bild 98: Absolute Masseverluste nach OVP der PA8-Varianten mit M3.1

Bild 99: Absolute Masseverluste nach OVP der PA8-Varianten mit M9.1

Die M9.1-Varianten haben nach der OVP, wie schon beim Kornverlust nach [TP Asphalt-StB, Teil 17, 2007] deutlich größere Masseverluste zu verzeichnen. Wie Bild 100 veranschaulicht, lässt sich zwischen den beiden Verfahren ein guter Zusammenhang feststellen. Trotz der unterschiedlichen Belastungsarten wurde ein Bestimmtheitsmaß von 0,91 erzielt. Der gute Zusammenhang ergibt

sich jedoch im Wesentlichen durch die RmB-Varianten.

Bild 100: Zusammenhang zwischen Kornverlust nach TP und Kornverlust nach OVP (PA8-Varianten)

Die Ergebnisse der PA11-Varianten sind in Tab. 40 aufgeführt. Die Konditionierung bewirkt auch bei diesen Varianten einen höheren Widerstand gegen Oberflächenverschleiß und somit geringeren Masseverluste als bei den unbeanspruchte Varianten. Die Masseverluste der Mastixvariante mit dem Bindemittel B9 (M9.1) sind deutlich höher als die der Varianten mit dem Bindemittel B3 (M3.1). Bild 101 veranschaulicht den Unterschied der beiden Mastixvarianten.

Varianta	Masseverlust			
vanante	[M%]	[g/m²]		
11_28_4_M3.1	0,58	2.873		
11_28_4_M3.1 beh.	0,35	1.784		
11_28_4_M9.1	5,59	28.056		
11_28_4_M9.1 beh.	3,26	16.093		

Nach den Oberflächenverschleißprüfungen wurde von jeder PA8-Variante mit Polymermodifiziertem Bindemittel das Bindemittel extrahiert. Die rückgewonnenen Bindemittel wurden mittels DSR und BBR untersucht, um die Vergleichbarkeit der Bitumen- und Asphaltalterungsmethoden zu überprüfen. Der Vergleich der gealterten Bindemittel ist in Bild 102 dargestellt. Die Bitumenproben aus den (8_6_4_M3.1 beh Diabas-Varianten und 8 14 4 M3.1 beh) haben leicht niedrigere Steifigkeiten als die Bitumenprobe der Granitvariante, welche eine sehr gute Vergleichbarkeit mit dem Bitumen B3 nach der künstlichen Alterung (RTFOT+PAV) aufweist. Dieser Unterschied ist auch beim Phasenwinkel ersichtlich.

Bild 101: Absolute Masseverluste nach OVP der PA11-Varianten

Bild 102: Komplexer Schermodul und Phasenwinkel der rückgewonnenen Bindemittel nach BAV + Frost-Tau-Wechsel im Vergleich zum Bindemittel B3 nach RTFOT+PAV

Die Hohlraumgehalte der geprüften Asphalt-Probeplatten unterschieden sich mit einer Differenz von 1,5 Vol.-% nur geringfügig, sodass der Hohlraumgehalt nur wenig Einfluss auf die leicht unterschiedlichen Bitumenkennwerte nach der Alterung hatte. In Bild 103 ist der Vergleich der extrahierten Bitumen vor und nach BAV und Frost-Tau-Wechsel dargestellt.

Bild 103: Komplexer Schermodul und Phasenwinkel der rückgewonnenen Bindemittel vor und nach BAV + Frost-Tau-Wechsel

Die rückgewonnenen Bitumen nach der Beanspruchung durch BAV und Frost-Tau-Wechsel wurden abschließend im BBR untersucht. Die Ergebnisse sind in Tab. 41 zusammengefasst. Ein Vergleich mit den Bitumenergebnissen nach RTFOT+PAV war nicht möglich (siehe Tab. 11). Die Temperaturen bei einer Biegesteifigkeit von 300 MPa und dem m-Wert von 0,3 liegen jedoch über den Temperaturen nach RTFOT, wodurch auf eine weitere Versteifung des Bitumens geschlossen werden kann.

BBR nach BAV + Frost-Tau-Wechsel					
BM aus Variante	T [°C] bei S = 300 MPa	T [°C] bei m = 0,3	ΔTc		
8_6_4	-18,2	-21,0	-1,9		
8_14_4	-20,1	-21,4	-1,3		
8_14G_4	-18,7	-19,8	-1,1		

Tab. 41: Temperaturen bei einer Biegekriechsteifigkeit von300 MPa und dem m-Wert von 0,3 (nach BAV + Frost-Tau-
Wechsel)

7 Zusammenfassung und Ausblick

Zur Optimierung des Nutzungsverhaltenes Offenporiger Asphalte wurde die Zusammensetzung des Asphaltmischgutes systematisch variiert. Zunächst wurden anhand von computerbasierter Modellberechnungen und Laboruntersuchungen 20 Sieblinien ausgewählt, die mit einem Referenz-Mastix hergestellt wurde. Der Referenz-Mastix konnte aus der Auswertung einer Länderabfrage zur Zusammensetzung von Offenporigen Asphalten abgeleitet werden.

Die Ergebnisse der computerbasierten Modellberechnung zeigten, dass hiermit noch keine zielsichere Vorhersage des experimentell ermittelten Hohlraumgehaltes möglich ist. Es ist allerdings auch nicht auszuschließen, dass die Ungenauigkeiten des Bezugswertes (Hohlraumgehalt am Asphalt-Probekörper) hierfür mit ursächlich ist. Zur Lösung dieser Problematik sollte die Methode zur Bestimmung der Hohlraumgehalte Offenporiger Asphalte optimiert werden. Mögliche Optimierungsparameter sind die Verdichtungsart, die Schichtdicke, der Probendurchmesser, sowie die geschnittenen und die angeschnittenen Flächenanteile.

Auf Grundlage der akustischen Eigenschaften und Kornverluste wurden die Variationen der Offenporigen Asphalte beurteilt. Die abschließenden Beurteilungen sind in den folgenden Tabellen dargestellt. Die gewählten Bewertungskriterien der einzelnen Untersuchungsergebnisse sind in Tab. 42 aufgeführt.

	-	ο	+
Schall- absorptionsgrad	< 0,7	0,7 - 0,8	> 0,8
Strömungs- widerstand	> 500	500 - 300	< 300
Hohlraumgehalt	< 23	23 - 24	> 24
Kornverlust PL	> 10	5 - 10	< 5
Masseverlust nach OVP	> 120	120 - 60	< 60

Tab. 42: Bewertungskriterien

Untersuchungsserie 1: Variation der PA8-Sieblinien						
	Besonderheit	Besonderheit 5/8	Mittelwert Hohlraum- gehalt	Schallab- sorptions- grad	Strömungs- widerstand	Kornverlust PL
PA8_3_1	2 % Sandzugabe	ohne Unterkorn	ο	o	+	+
PA8_6_1	5 % Sandzugabe	ohne Unterkorn	-	+	-	+
PA8_7_1	nach Regelwerk	ohne Unterkorn	0	+	+	+
PA8_9_1	5 % Sandzugabe		-	o	-	+
PA8_12_1	3 % Sand & 7 % 2/5	rein 5/8	-	o	-	+
PA8_14_1	nach Regelwerk		ο	ο	-	+
PA8_15_1	5 % 2/5		o		o	+
PA8_16_1	5 % Sand & 5 % 2/5	ohne Unterkorn	-	o	-	+
PA8_17_1	5 % Sandzugabe	ohne Unterkorn	-	ο	-	+
PA8_19_1	5 % Sandzugabe	rein 5/8	-	+	o	+

Tab. 43: Beurteilung der Variation der PA8-Sieblinien

Untersuchungsserie 1: Variation der PA11-Sieblinien						
	Besonderheit	Besonderheit 8/11	Mittelwert Hohlraum- gehalt	Schallab- sorptions- grad	Strömungs- widerstand	Kornverlust PL
PA11_25_1	4 % Sand & 5 % 2/5		-	-	+	+
PA11_28_1	nach Regelwerk	ohne Unterkorn	+	+	+	o
PA11_29_1	5 % Sandzugabe	ohne Unterkorn	-	o	o	+
PA11_30_1	6 % 2/5 & 5 % 5/8	ohne Unterkorn	-	o	-	+
PA11_32_1	15 % 2/5	ohne Unterkorn	-	-	-	+
PA11_33_1	4 % Sand & 6 % 2/5	rein 8/11	-	o	-	+
PA11_34_1	4 % Sandzugabe	ohne Unterkorn	-	o	+	o
PA11_35_1	1 % Sandzugabe	ohne Unterkorn	o	o	+	+
PA11_39_1	4 % Sand & 2 % 2/5	ohne Unterkorn	o	o	+	+
PA11_40_1	4 % Sand & 3 % 2/5	rein 8/11	-	o	o	+

Tab. 44: Beurteilung der Variation der PA11-Sieblinien

Aus der Untersuchungsserie 1 wurde die Sieblinienvariante PA8_7 anhand der Bewertung als beste Variante identifiziert. Aus den drei Sieblinienvarianten mit einer Sandzugabe (PA8_3, PA8_6 und PA8_19), die noch eine gute bis befriedigende Bewertung erzielten, wurde die Variante PA8_6 für die weiteren Untersuchungsserien gewählt, da eine Sandzugabe von 5,0 M.-% in der Praxis viel diskutiert wird und die Sieblinienvariante vermeintlich einen größeren Praxisbezug aufweist. Des Weiteren wurden die Sieblinie PA8_14 (nach Regelwerk) und PA8_9 (größtes Optimierungspotential) zur Variation der Kornformen ausgewählt.

Die Bewertung der Sieblinienvarianten der Offenporigen Asphalte mit einem Größtkorn von 11 mm (Untersuchungsserie 1) ist in Tab. 44 aufgeführt. Die Variante PA11_28 ist als deutlich beste Variante auszumachen und wurde daher auch in den weiteren Untersuchungsserien berücksichtigt. Die Ergebnisse zweier weiterer Varianten konnten gute bis befriedigende Ergebnisse erzielen (PA11_35 und PA11_39). Weiter untersucht wurde die Variante PA11_39, ebenso wie die Varianten PA11_29 (5,0 % Sandzugabe) und PA11_33.

Die sich anschließende Variation der Kornform (Untersuchungsserie 2) zeigte keinen eindeutigen Bezug zu den akustischen Eigenschaften. Sowohl bei den PA8-Varianten (vgl. Tab. 45) als auch bei den PA11-Varianten (s. Tab. 46) variieren die Ergebnisse und damit die Beurteilung stark. Deutlich wurde jedoch, dass die hier durchgeführten Variationen der Kornform keinen Einfluss auf den Hohlraumgehalt haben.

Zur Ermittlung des Mastixeinflusses (Untersuchungsserie 3) auf die akustischen Eigenschaften wurden die Sieblinienvarianten PA8_14 (FI 10) und PA11_28 (FI 20) gewählt.

Untersuchungsserie 2: Variation der Kornform bei den PA8-Variante							
	Besonderheit		Mittelwert Hohlraum- gehalt	Schallab- sorptions- grad	Strömungs- widerstand	Kornverlust PL	
PA8_6_2	FI 0		-	o	o	+	
PA8_6_2	FI 10	Sandzugabe	-	+	-	0	
PA8_6_2	FI 20		-	o	o	0	
PA8_7_2	FI 0		+	+	+	0	
PA8_7_2	FI 10	Regelwerk	+	+	o	0	
PA8_7_2	FI 20		+	+	+	+	
PA8_9_2	FI 0		-	+	-	+	
PA8_9_2	FI 10	Sandzugabe	-	0	0	0	
PA8_9_2	FI 20		-	+	-	+	
PA8_14_2	FI 0	Regelwerk	+	+	+	0	
PA8_14_2	FI 10	und	0	+	0	0	
PA8_14_2	FI 20	Unterkorn	+	+	+	+	

Tab. 45: Beurteilung der Kornformvariation - PA8-Varianten

Untersuchungsserie 2: Variation der Kornform bei den PA11-Varianten						
	Besonderheit		Mittelwert Hohlraum- gehalt	Schallab- sorptions- grad	Strömungs- widerstand	Kornverlust PL
PA11_28_2	FI 0		-	+	+	-
PA11_28_2	FI 10	Regelwerk	+	o	+	-
PA11_28_2	FI 20		0	+	+	-
PA11_29_2	FI 0		-	o	+	+
PA11_29_2	FI 10	Sandzugabe	-	o	+	0
PA11_29_2	FI 20		-	+	+	0
PA11_33_2	FI 0	4 % Sand-	-	o	o	+
PA11_33_2	FI 10	und 6 %	-	+	o	+
PA11_33_2	FI 20	2/5-Zugabe	-	o	o	0
PA11_39_2	FI 0	4 % Sand-	-	o	o	0
PA11_39_2	FI 10	und 2 %	-	+	+	0
PA11_39_2	FI 20	2/5-Zugabe	-	+	+	0

Tab. 46: Beurteilung der Kornformvariation - PA11-Varianten

Die Variation der Mastixkomponente in Untersuchungsserie 3 zeigte sehr deutliche Einflüsse auf den Hohlraumgehalt (s. Tab. 47 und Tab. 48). Sowohl beim Hohlraumgehalt als auch bei dem Schallabsorptionsgrad wurden Ergebnisse im guten Bereich erzielt. Die Strömungswiderstände und Kornverluste konnten mit wenigen Ausnahmen dem guten bis befriedigenden Bereich zugeordnet werden. Somit sollte die Betrachtung der Mastixkomponenten in Bezug auf eine bessere Nutzungsdauer des Offenporigen Asphaltes zukünftig eine größere Bedeutung bekommen.

Geringfügig bessere Ergebnisse wurden bei den PA8-Varianten ohne die Verwendung von Kalkhydrat erzielt. Auf Grundlage dieser Erkenntnisse wurde für die abschließenden Asphaltuntersuchungen der Füller KS2 verwendet. Die Auswahl des Bitumens erfolgte zusätzlich zu den Ergebnissen in Tab. 47 und Tab. 48 anhand der rheologischen Eigenschaften.

Untersuchungsserie 3: Variation der Mastixkomponente – PA8						
	Besonderheit Bitumen	Besonderheit Füller	Mittelwert Hohlraum- gehalt	Schallab- sorptions- grad	Strömungs- widerstand	Kornverlust PL
8_14_3_M1.1	B1	KS2	+	+	0	o
8_14_3_M1.2	B1	KS1+Kalkhydrat	+	+	o	o
8_14_3_M3.1	В3	KS2	+	+	+	o
8_14_3_M3.2	В3	KS1+Kalkhydrat	+	+	o	+
8_14_3_M4.1	B4	KS2	+	+	+	o
8_14_3_M4.2	B4	KS1+Kalkhydrat	+	+	+	o
8_14_3_M5.1	B5	KS2	+	+	+	+
8_14_3_M5.2	B5	KS1+Kalkhydrat	+	+	+	+
8_14_3_M6.1	B6	KS2	+	+	0	+
8_14_3_M6.2	B6	KS1+Kalkhydrat	o	+	o	+
8_14_3_M7.1	В7	KS2	+	+	o	-
8_14_3_M7.2	B7	KS1+Kalkhydrat	+	+	o	-
8_14_3_M8.1	B8	KS2	+	+	o	-
8_14_3_M8.2	B8	KS1+Kalkhydrat	0	+	0	-
8_14_3_M9.1	В9	KS2	+	+	0	-
8_14_3_M9.2	В9	KS1+Kalkhydrat	+	+	o	-

Tab. 47: Bewertung der Mastixvariation - PA8

Untersuchungsserie 3: Variation der Mastixkomponente – PA11						
	Besonderheit Bitumen	Besonderheit Füller	Mittelwert Hohlraum- gehalt	Schallab- sorptions- grad	Strömungs- widerstand	Kornverlust PL
11_28_3_M3.1	B3	KS2	+	o	+	0
11_28_3_M3.2	В3	KS1+Kalkhydrat	+	+	+	0
11_28_3_M9.1	B9	KS2	+	+	+	-
11_28_3_M9.2	B9	KS1+Kalkhydrat	+	+	+	-

Tab. 48: Bewertung der Mastixvariation - PA11

In den abschließenden Asphaltuntersuchungen wurden vier Sieblinienvarianten untersucht. Die Ergebnisse weisen erneut auf deren großen Einfluss hin (s. Tab. 49). Auffällig waren die Ergebnisse der Hohlraumgehalte und Strömungswiderstände der PA8-Varianten, die teilweise trotz unveränderter Zusammensetzung (PA8_14_4_MX.1) im Vergleich zu den vorherigen Untersuchungen zu einer schlechteren Beurteilung führten. Die Ergebnisse und die Differenzierbarkeit der Oberflächenverschleißprüfung vor und nach Alterung sollten kritisch hinterfragt und weiter untersucht werden.

Abschließende Asphaltuntersuchungen								
	I	Besonderhe	eit			Bewertung		
	Sieblinie	Kornform	Mastix	Mittelwert Hohlraum- gehalt	Schallab- sorptions- grad	Strömungs- widerstand	Kornverlust PL	Masse- verlust OVP
PA8_6_4_M3.1	5 % Sand	FI 10	KS2 + B3	-	+	-	+	o
PA8_6_4_M9.1	5 % Sand	FI 10	KS2 + B9	0	+	-	-	-
PA8_14_4_M3.1		FI 10	KS2 + B3	o	+	-	+	+
PA8_14_4_M9.1		FI 10	KS2 + B9	o	+	o	-	-
PA8_14G_4_M3.1	Granit	FI 10	KS2 + B3	-	o	-	o	+
PA8_14G_4_M9.1	Granit	FI 10	KS2 + B9	-	+	-	-	-
PA11_28_4_M3.1		FI 20	KS2 + B3	+	0	+	0	+
PA11_28_4_M9.1		FI 20	KS2 + B9	+	+	+	-	-

Tab. 49: Bewertung der abschließenden Asphaltuntersuchungen

Abschließende Kernaussagen

Korngrößenverteilung:

- Die Sandzugabe von mehr als 3 Vol.-% verringert den Hohlraumgehalt.
- Sandzugabe zeigt bei einem Größtkorn von 8 mm keinen Einfluss auf den Kornverlust PL.
- Bei einem Größtkorn von 11 mm sind geringere Kornverluste bei Varianten mit Sandzugabe ermittelt worden.

Kornform:

- Die Kornform hatte in dieser Untersuchungsreihe keinen erkennbaren Einfluss auf den Kornverlust.
- Nur bei einem Größtkorn von 8 mm und den Bohrkernen mit einem Durchmesser von 100 mm zeigt sich ein geringer Einfluss der Kornform auf den Hohlraumgehalt.

Größtkorn:

- Beurteilt anhand der Bewertungskriterien aus Tab. 42 erzielen die PA8-Varianten bessere Ergebnisse beim Hohlraumgehalt und Schallabsorptionsgrad.
- Der Kornverlust PL ist im Allgemeinen bei einem Größtkorn von 8 mm geringer.
- Bei den PA11-Varianten konnten bessere Strömungswiderstände ermittelt werden.

Mastix:

- Die Mastixrheologie ist eine wichtige Optimierungsgröße.
- Zu hohe Mastixsteifigkeiten führen zu höheren Kornverlusten. Eine Betrachtung unter

Berücksichtigung von Alterungsprozessen wäre sinnvoll.

 Die Ergebnisse dieser Untersuchungsreihe deuten auf eine gute Mastixrheologie hin, wenn der Komplexe Schermodul < 8,0 MPa und der Phasenwinkel < 46° ist.

Bindemittelvolumen:

- Ein Einfluss des Bindemittelvolumens auf den Hohlraumgehalt ist erkennbar (vgl. Bild 104 bis Bild 107).
- Leichte Veränderungen des Bindemittelvolumens beeinflussen den Hohlraumgehalt.

Nutzungsdauerprognose:

- Der Vergleich der Bitumenalterung nach RTFOT + PAV mit dem rückgewonnenen Bitumen nach BAV und Frost-Tau-Wechsel-Beanspruchung zeigt erste Übereinstimmungen.
- Offenporiger Asphalt wird hauptsächlich auf Autobahnen eingesetzt (ohne Rangierbeanspruchung). Daher stellt sich die Frage, ob die in der [DIN CEN/TS 12697-50, 2018] aufgeführten Prüfverfahren die für einen Offenporigen Asphalt (auf Autobahnen) richtigen Beanspruchungszustände simulieren Die Ergebnisse nach der OVP lassen vermuten, dass der Alterungsgrad zum Versagen der Verklebung des Korngerüstes noch nicht erreicht wurde oder die Beanspruchungsmethode ungeeignet ist.

Bild 104: Volumina der verschiedenen Offenporigen Asphalte (Untersuchungsserie 1)

Bild 105: Volumina der verschiedenen Offenporigen Asphalte (Untersuchungsserie 2)

Bild 106: Volumina der verschiedenen Offenporigen Asphalte (Untersuchungsserie 3)

Bild 107: Volumina der verschiedenen Offenporigen Asphalte (Untersuchungsserie 4)

Weiteres Vorgehen

Die Simulation der mechanischen Beanspruchung mit der Oberflächenverschleißprüfung scheint für einen Offenporigen Asphalt auf Autobahnen keine zielführende Prüfmethode zu sein. Daher sollten Alternativen gesucht werden, die die Nutzungsbedingungen besser abbilden. Unabhängig davon geben die Ergebnisse der Untersuchungen einige Hinweise zur Verbesserung des Nutzungsverhaltens, die im Rahmen einer Erprobungsstrecke in der Praxis überprüft werden sollte.

Literatur

- ALBER, S.: Veränderung des Schallabsorptionsverhaltens von offenporigen Asphalten durch Verschmutzung. Veröffentlichungen aus dem Institut für Straßen- und Verkehrswesen. Stuttgart, 2013
- ARBTER, B.: Numerische Bestimmung der akustischen Eigenschaften offenporiger Fahrbahnbeläge aus Basis ihrer rekonstruierten Geometrie. Veröffentlichungen aus dem Institut für Straßenund Verkehrswesen. Stuttgart, 2014
- **BASt**: Statuspapier Offenporige Asphaltdeckschichten (OPA). Bergisch Gladbach, 2009
- **BMVI**: Länderabfrage Datensammlung von Streckenabschnitten mit einer Deckschicht aus Offenporigem Asphalt. Bundesministerium für Verkehr und digitale Infrastruktur. Berlin : unveröffentlicht
- **DIN 52215 (zurückgezogen):** Bauakustische Prüfungen - Bestimmung des Schallabsorptionsgrades und der Impedanz im Rohr. Deutsches Institut für Normung , Beuth Verlag, Berlin, 1963
- DIN CEN/TS 12390-9: Prüfung von Festbeton Teil 9: Frost- und Frost-Tausalz-Widerstand - Abwitterung. Deutsches Institut für Normung , Beuth Verlag, Berlin, 2006
- DIN CEN/TS 12697-50: Asphalt Prüfverfahren -Teil 50: Widerstand gegen Oberflächenverschleiß. Deutsches Institut für Normung, Beuth Verlag, Berlin, November 2016
- **DIN EN 933-3:** Prüfverfahren für geometrische Eigenschaften von Gesteinskörnungen - Teil 3: Bestimmung der Kornform - Plattigkeitskennzahl. Deutsches Institut für Normung , Beuth Verlag, Berlin, 2012
- **DIN EN 933-4:** Prüfverfahren für geometrische Eigenschaften von Gesteinskörnungen - Teil 4: Bestimmung der Kornform - Kornformkennzahl. Deutsches Institut für Normung , Beuth Verlag, Berlin, 2015
- **DIN EN 1097-6:** Prüfverfahren für mechanische und physikalische Eigenschaften von Gesteinskörnungen - Teil 6: Bestimmung der Rohdichte und der Wasseraufnahme. Deutsches Institut für Normung , Beuth Verlag, Berlin, 2013
- DIN EN 1097-7: Prüfverfahren für mechanische und physikalische Eigenschaften von Gesteinskörnungen - Teil 7: Bestimmung der Rohdichte von Füller - Pyknometer-Verfahren. Deutsches Institut für Normung , Beuth Verlag, Berlin, 2008

- **DIN EN 1426:** Bitumen und bitumenhaltige Bindemittel - Bestimmung der Nadelpenetration. Deutsches Institut für Normung , Beuth Verlag, Berlin, 2015
- **DIN EN 1427:** Bitumen und bitumenhaltige Bindemittel - Bestimmung des Erweichungspunktes -Ring- und Kugel-Verfahren. Deutsches Institut für Normung , Beuth Verlag, Berlin, 2015
- DIN EN 12607-1: Bitumen und bitumenhaltige Bindemittel - Bestimmung der Beständigkeit gegen Verhärtung unter Einfluss von Wärme und Luft -Teil 1: RTFOT-Verfahren. Deutsches Institut für Normung, Beuth Verlag, Berlin, 2015
- **DIN EN 14769:** Bitumen und bitumenhaltige Bindemittel - Beschleunigte Langzeit-Alterung mit einem Druckalterungsbehälter (PAV). Deutsches Institut für Normung , Beuth Verlag, Berlin, 2012
- **DIN EN 14770:** Bitumen und bitumenhaltige Bindemittel - Bestimmung des komplexen Schermoduls und des Phasenwinkels - Dynamisches Scherrheometer (DSR). Deutsches Institut für Normung, Beuth Verlag, Berlin, 2012
- **DIN EN 14771:** Bitumen und bitumenhaltige Bindemittel - Bestimmung der Biegekriechsteifigkeit -Biegebalkenrheometer. Deutsches Institut für Normung, Beuth Verlag, Berlin, 2012
- DIN EN 29053: Materialien für akustische Anwendungen - Bestimmung des Strömungswiderstandes. Deutsches Institut für Normung, Beuth Verlag, Berlin, 1993
- DIN EN ISO 10534-1: Akustik Bestimmung des Schallabsorptionsgrades und der Impedanz in Impedanzrohren - Teil 1: Verfahren mit Stehwellenverhältnis. Deutsches Institut für Normung , Beuth Verlag, Berlin, 2001
- DIN EN ISO 13503-2: Erdöl- und Erdgasindustrie -Komplettierungsflüssigkeiten und -materialien -Teil 2: Messung der Eigenschaften von Stützmaterialien zum Einsatz bei hydraulischen Fraktionierungs- und in Kiespackungsvorgängen. Deutsches Institut für Normung , Beuth Verlag, Berlin, 2010
- **EUROPÄISCHE KALKVERBAND EULA**; Arbeitsgruppe Asphalt (Mitarb.): Kalkhydrat: Ein bewährter Zusatzstoff für den dauerhaften und nachhaltigen Asphaltstraßenbau : Eine Literaturauswertung. 2011
- FE 04.205/2006/ARB: WELLNER, F. ; ASCHER, D. ; RADENBERG, M. ; CETINKAYA, R.: Bestimmung des Alterungsverhaltens von Asphaltgemischen als Grundlage für die Dimensionierung und Prognose der Lebensdauer und Schadensentstehung. Heft 1091 Bundesministerium für Verkehr, Bau- und Wohnungswesen (Hrsg.)

(Forschung Straßenbau und Straßenverkehrstechnik), Bundesdruckerei GmbH, Bonn, 2013

- FE 07.0222/2007/ARB: SCHMALZ, M. ; HAUSINGER, N.: Optimierung der asphalttechnischen und akustischen Eigenschaften von Offenporigen Asphaltdeckschichten hinsichtlich Nutzungsdauer und schalltechnischer Wirksamkeit : Teil 1: Laboruntersuchungen. Heft 1093 Bundesministerium für Verkehr, Bau- und Wohnungswesen (Hrsg.) (Forschung Straßenbau und Straßenverkehrstechnik), Bundesdruckerei GmbH, Bonn, 2013
- H SO, Entwurf: Hinweise zur Schalltechnik und zu schalltechnischen Pr
 üfungen bei Asphaltdeckschichten aus Offenporigem Asphalt. Forschungsgesellschaft f
 ür Stra
 ßen- und Verkehrswesen e.V. (FGSV), 2015
- JELLEMA, E. (Hrsg.); VONK, W. (Mitarb.): Improving durability and functionality retention of porous asphalt by using high performing bituminous binders. 6th Eurasphalt & Eurobitumen Congress. Prag, 2016
- LEISTRA 2: Verbundprojekt "Leiser Straßenverkehr 2" : Reduzierte Reifen-Fahrbahn-Geräusche. Bundesanstalt für Straßenwesen (Hrsg.) (Berichte der Bundesanstalt für Straßenwesen -Straßenbau Heft S 74), Wissenschaftsverlag NW, Bremerhaven, 2012
- M OPA: Merkblatt für Asphaltdeckschichten aus Offenporigem Asphalt. Forschungsgesellschaft für Straßen- und Verkehrswesen e.V. (FGSV), FGSV Verlag, Köln, 2013
- NEUMANN, G.; ROGGENBUCK, H.: Einbau von Dränasphalt auf einer Bundeautobahn. In: *Bitumen, Nr.* 6, 184 bis 187, 1978
- **RLS 90:** Richtlinien für den Lärmschutz an Straßen. Bundesministerium für Verkehr, FGSV Verlag, Köln, 1992
- **ROOT**, V.: Entwicklung eines Prüfverfahrens zur Beurteilung des Widerstandes von Asphaltdeckschichten gegen Schubbeanspruchungen an der Oberfläche. Darmstadt, 2008
- SCHÜLER, T. ; JÄNICKE, R. ; STEEB, H.: Nonlinear modeling and computational homogenization of asphalt concrete on the basis of XRCT scans. In: *Construction and Building Materials* 109, S. 96–108, 2016
- THE, P. (Hrsg.); VOSKUILEN, J. (Mitarb.); VAN DE
 VEN, M. (Mitarb.) : Life-prolonging preventive maintenance techniques for Porous Asphalt. 6th Eurasphalt & Eurobitumen Congress. Prag, 2016
- TL Asphalt-StB: Technische Lieferbedingungen für Asphaltmischgut für den Bau von Verkehrsflächenbefestigungen. Forschungsgesellschaft

für Straßen- und Verkehrswesen e.V. (FGSV), FGSV Verlag, Köln, 2007/2013

- TL RmB-StB By: Technische Lieferbedingungen für Gummimodifizierte Bitumen. Oberste Baubehörde im Bayerischen Staatsministerium des Innern, 2010
- TP Asphalt-StB, Teil 17: Technische Pr
 üfvorschrift f
 ür Asphalt - Teil 17: Kornverlust von Probekörpern aus Offenporigem Asphalt. Forschungsgesellschaft f
 ür Stra
 ßen- und Verkehrswesen e.V. (FGSV), FGSV Verlag, Köln, 2007
- **TP Asphalt-StB, Teil 18:** Technische Prüfvorschriften für Asphalt - Teil 18: Ablaufen von Bitumen aus Splittmastixasphalt und Offenporigem Asphalt. Forschungsgesellschaft für Straßen- und Verkehrswesen e.V. (FGSV), FGSV Verlag, Köln, 2007
- TP Asphalt-StB, Teil 30: Technische Prüfvorschriften für Asphalt - Teil 30: Herstellung von Marshall-Probekörpern mit dem Marshall-Verdichtungsgerät (MVG). Forschungsgesellschaft für Straßen- und Verkehrswesen e.V. (FGSV) , FGSV Verlag, Köln, 2007
- TP Asphalt-StB, Teil 33: Technische Prüfvorschriften für Asphalt - Teil 33: Herstellung von Asphalt-Probeplatten im Laboratorium mit dem Walzsektor-Verdichtungsgerät (WSV). Forschungsgesellschaft für Straßen- und Verkehrswesen e.V. (FGSV), FGSV Verlag, Köln, 2007
- **VOSKUILEN, J.** (Hrsg.); **VAN DE VEN, M.** (Hrsg.): Winter problems with Porous Asphalt in the Netherlands. ISAP. Nagoya, Japan, 2010
- **ZTV Asphalt-StB:** Zusätzliche Technische Vertragsbedingungen und Richtlinien für den Bau von Verkehrsflächenbefestigungen aus Asphalt. Forschungsgesellschaft für Straßen- und Verkehrswesen e.V. (FGSV) , FGSV Verlag, Köln, 2007/2013

Bilder

BIIG T:	nischer Merkmale auf den Schallabsorp- tionsgrad [M OPA, 2013]
Bild 2:	Optimale Anpassung des Schallabsorp- tionsgrades α auf ein Verkehrsgeräusch- spektrum [H SO, Entwurf, 2015]
Bild 3:	Diagramm zur visuellen Beurteilung der Sphärizität und Rundheit von Kornformen [DIN EN ISO 13503-2, 2010]
Bild 4:	Simulierte Gesteinskugeln als dichte Kugelpackung im Einheitswürfel
Bild 5:	Vergleich der dichten Kugelpackung mit geschrumpften Voronoi-Zellen [SCHÜLER et al., 2016]
Bild 6:	Prinzipskizze der Bohrkernentnahme
Bild 7:	Schematische Darstellung der Prüfan- ordnung nach [DIN EN ISO 10534-1, 2001] und [DIN 52215 (zurückgezogen), 1963]
Bild 8:	Die Prüfanordnung in der Audiomet- riekabine
Bild 9:	Temperaturverlauf während der Frost- Tau-Wechsel
Bild 10:	Schematische Darstellung des DSD-Prüfgerätes [DIN CEN/TS 12697-50, 2018]
Bild 11:	DSD-Prüfgerät im Laboratorium
Bild 12:	Prinzipskizze der CT-Messung [LEISTRA 2, 2012]
Bild 13:	Black-Diagramm der verwendeten Bin- demittel im frischen Zustand
Bild 14:	Relative Häufigkeitsverteilung der Sphä- rizität des Diabas 5/8
Bild 15:	Relative Häufigkeitsverteilung der Mit- telwerte der Sphärizität aller Gesteinsarten
Bild 16:	Relative Summenkurve der Mittelwerte der Sphärizität aller Gesteinsarten
Bild 17 [.]	Partikelprojektionen einer

Bild 17: Partikelprojektionen einer Gesteinsprobe Diabas 5/8

- Bild 18: Analysierte Partikelprojektionen mit deren jeweiligen Sphärizität
- Bild 19: Sphärizität eines Diabas Gesteinskorns (5/8) mit dem Verhältnis L/E = 3

Bild 20: Komplexer Schermodul und Phasenwinkel der Mastix-Varianten 1 bis 4 (im Vergleich B5 als Referenz-Bindemittel)

- Bild 21: Komplexer Schermodul und Phasenwinkel der Mastix-Varianten 5 bis 8 (im Vergleich B5 als Referenz-Bindemittel)
- Bild 22: Komplexer Schermodul und Phasenwinkel der Mastix-Varianten 9 bis 12 (im Vergleich B5 als Referenz-Bindemittel)
- Bild 23: Bindemittelablauf mit Faserpellets
- Bild 24: Bindemittelablauf mit losen Zellulosefasern
- Bild 25: DSR-Ergebnisse der Mastixvarianten M5.1 und M5.2 bei verschiedenen Frequenzen
- Bild 26: DSR-Ergebnisse der Mastixvarianten mit B1 bis B6 und Füllervarianten 1 und 3 (bei 1,59 Hz) 25
- Bild 27: DSR-Ergebnisse der Mastixvarianten mit B7 bis B9 und Füllervariante 1 (bei 1,59 Hz)
- Bild 28: DSR-Ergebnisse der Mastixvarianten mit B1 bis B6 und Füllervariante 2 (bei 1,59 Hz)
- Bild 29: DSR-Ergebnisse der Mastixvarianten mit B7 bis B9 und Füllervariante 2 (bei 1,59 Hz)
- Bild 30: Korngrößenverteilung der Varianten PA8_1 bis PA8_5
- Bild 31: Korngrößenverteilung der Varianten PA8_6 bis PA8_10
- Bild 32: Korngrößenverteilung der Varianten PA8_11 bis PA8_15
- Bild 33: Korngrößenverteilung der Varianten PA8_16 bis PA8_20

Bild 34:	Korngrößenverteilung der Varianten PA11_21 bis PA11_25
Bild 35:	Korngrößenverteilung der Varianten PA11_26 bis PA11_30
Bild 36:	Korngrößenverteilung der Varianten PA11_31 bis PA11_35
Bild 37:	Korngrößenverteilung der Varianten PA11_36 bis PA11_40
Bild 38:	Simulierte Korngrößenverteilung der Variante PA8_7
Bild 39:	Ausgangskorngrößenverteilung der Variante PA8_7
Bild 40:	Simulierte Gesteinsverteilung der Variante PA8_7 im Einheitswürfel
Bild 41:	Schnittbild durch den simulierten Würfel der Variante PA8_7
Bild 42:	Gegenüberstellung der Hohlraum- gehalte
Bild 43:	Masseverlust der verschiedenen PA8- Konzepte
Bild 44:	Hohlraumgehalte verschiedener PA8-Probekörper (Serie 1)
Bild 45:	Kornverlust der PA8-Varianten (Serie 1)
Bild 46:	Zusammenhang zwischen Hohl- raumgehalt MPK und Kornverlust PL der PA8-Varianten (Hohlraumgehalt von PA8_15_1 als Ausreißer markiert)
Bild 47:	Probekörper nach der Bestimmung des Kornverlustes
Bild 48:	Schallabsorptionsgrad der PA8-Va- rianten aus Untersuchungsserie 1
Bild 49:	Strömungswiderstand der PA8-Va- rianten aus Untersuchungsserie 1
Bild 50:	Zusammenhang zwischen Strömungs- widerstand und Schallabsorptionsgrad PA8 (Serie 1)
Bild 51:	Hohlraumgehalte verschiedener PA11-Probekörper (Serie 1)
Bild 52:	Zusammenhang zwischen Hohl- raumgehalt MPK und Kornverlust PL (PA11-Varianten)
Bild 53:	Kornverlust der PA11-Variante (Serie 1)

- Bild 54: Schallabsorptionsgrad der PA11-Varianten aus Untersuchungsserie 1
- Bild 55: Strömungswiderstand der PA11-Varianten aus Untersuchungsserie 1
- Bild 56: Zusammenhang zwischen Schallabsorptionsgrad und Strömungswiderstand PA11 (Serie 1)
- Bild 57: Hohlraumgehalte verschiedener Probekörper der Varianten mit Granit
- Bild 58: Schallabsorptionsgrad der PA-Varianten mit Granit - Untersuchungsserie 1
- Bild 59: Strömungswiderstand der PA-Varianten mit Granit - Untersuchungsserie 1
- Bild 60: Zusammenhang zwischen Strömungswiderstand und Schallabsorptionsgrad (Serie 1)
- Bild 61: Hohlraumgehalte verschiedener PA8-Probekörper (Serie 2)
- Bild 62: Kornverlust der PA8-Varianten (Serie 2)
- Bild 63: Schallabsorptionsgrad der PA8-Varainten aus Untersuchungsserie 2
- Bild 64: Strömungswiderstand der PA8-Varianten aus Untersuchungsserie 2
- Bild 65: Zusammenhang zwischen Strömungswiderstand und Schallabsorptionsgrad PA8 (Serie 2)
- Bild 66: Hohlraumgehalte verschiedener PA11-Varianten (Serie 2)
- Bild 67: Kornverlust der PA11-Varianten (Serie 2)
- Bild 68: Schallabsorptionsgrad der PA11-Varianten (Serie 2)
- Bild 69: Strömungswiderstand der PA11-Varianten aus Untersuchungsserie 2
- Bild 70: Zusammenhang zwischen Strömungswiderstand und Schallabsorptionsgrad PA11 (Serie 2)
- Bild 71: Hohlraumgehalte der Variante PA8_14 mit verschiedenen Mastixvarianten
- Bild 72: Kornverlust der PA8-Variante 14 mit verschiedenen Mastixvarianten

Bild 73:	Zusammenhang zwischen Kornverlust PL und Kompl. Schermodul G* der Mas- tixvarianten bei T = 20 °C
Bild 74:	Zusammenhang zwischen Kornverlust PL und Phasenwinkel der Mastixva- rianten bei T = 20 °C
Bild 75:	Schallabsorptionsgrad der PA8-Va- rianten aus Untersuchungsserie 3
Bild 76:	Strömungswiderstand der PA8-Va- rainten aus Untersuchungsserie 3
Bild 77:	Zusammenhang zwischen Strömungs- widerstand und Schallabsorptionsgrad PA8 (Serie 3)
Bild 78:	Hohlraumgehalte der Varianten PA11_28 mit verschiedenen Mastixva- rianten
Bild 79:	Kornverlust der Varianten PA11_28 mit verschiedenen Mastixvarianten
Bild 80:	Schallabsorptionsgrad der PA11-Va- rianten aus Untersuchungsserie 3
Bild 81:	Strömungswiderstand der PA11-Va- rianten aus Untersuchungsserie 3
Bild 82:	Zusammenhang zwischen Strömungs- widerstand und Schallabsorptionsgrad PA11 (Serie 3)
Bild 83:	Hohlraumgehalte der verschiedenen PA-Varianten (Serie 4)
Bild 84:	Kornverlust PL der verschiedenen PA-Varianten (Serie 4)
Bild 85:	Schallabsorptionsgrad der ver- schiedenen PA-Varianten (Serie 4)
Bild 86:	Strömungswiderstand der ver- schiedenen PA-Varianten (Serie 4)
Bild 87:	Zusammenhang zwischen Strömungs- widerstand und Schallabsorptionsgrad (Serie 4)
Bild 88:	Beispielhafte Darstellung eines CT-Bildes eines untersuchten Bohrkerns
Bild 89:	Grauwertverteilung eines CT-Scans
Bild 90:	BK 8_14_4_M3.1 mit einem Hohlraum von V = 25,2 Vol%
D ¹¹ L D L	

Bild 91: BK 8_14_4_M9.1 mit einem Hohlraum von V = 24,0 Vol.-%

- Bild 92: BK 8_6_4_M3.1 mit einem Hohlraum von V = 21,0 Vol.-%
- Bild 93: BK 8_6_4_M9.1 mit einem Hohlraum von V = 24,2 Vol.-%
- Bild 94: BK 8_14G_4_M3.1 mit einem Hohlraumgehalt von V = 22,4 Vol.-%
- Bild 95: BK 8_14G_4_M9.1 mit einem Hohlraumgehalt von V = 25,3 Vol.-%
- Bild 96: BK 11_28_4_M3.1 mit einem Hohlraum von V = 27,1 Vol.-%
- Bild 97: BK 11_28_4_M9.1 mit einem Hohlraum von V = 27,9 Vol.-%
- Bild 98: Absolute Masseverluste nach OVP der PA8-Varianten mit M3.1
- Bild 99: Absolute Masseverluste nach OVP der PA8-Varianten mit M9.1
- Bild 100: Zusammenhang zwischen Kornverlust nach TP und Kornverlust nach OVP (PA8-Varianten)
- Bild 101: Absolute Masseverlusten nach OVP der PA11-Varianten
- Bild 102: Komplexer Schermodul und Phasenwinkel der rückgewonnenen Bindemittel nach BAV + Frost-Tau-Wechsel im Vergleich zum Bindemittel B3 nach RTFOT+PAV
- Bild 103: Komplexer Schermodul und Phasenwinkel der rückgewonnenen Bindemittel vor und nach BAV + Frost-Tau-Wechsel
- Bild 104: Volumina der verschiedenen Offenporigen Asphalte (Serie 1)
- Bild 105: Volumina der verschiedenen Offenporigen Asphalte (Serie 2)
- Bild 106: Volumina der verschiedenen Offenporigen Asphalte (Serie 3)
- Bild 107: Volumina der verschiedenen Offenporigen Asphalte (Serie 4)
Tabellen

- Tab. 1:Anforderungen an Offenporige Asphalte[TL Asphalt-StB, 2007/2013]
- Tab. 2: Zusammensetzung der Mischgüter aus der Länderabfrage des BMVI [BMVI, unveröffentlicht]
- Tab. 3: Auswahl der Bindemittel
- Tab. 4: Auswahl der Gesteinsarten
- Tab. 5: Randbedingungen der Frost-Tau-Wechsel
- Tab. 6: Randbedingungen der Oberflächenverschleißprüfung nach [DIN CEN/TS 12697-50, 2018]
- Tab. 7: Ergebnisse Erweichungspunkt Ring und Kugel
- Tab. 8: Ergebnisse der Nadelpenetration
- Tab. 9:Temperaturen bei einer Biegekriechstei-
figkeit von 300 MPa und dem m-Wert
von 0,3 (frischer Zustand)
- Tab. 10: Temperaturen bei einer Biegekriechsteifigkeit von 300 MPa und dem m-Wert von 0,3 (nach RTFOT)
- Tab. 11: Temperaturen bei einer Biegekriechsteifigkeit von 300 MPa und dem m-Wert von 0,3 (nach RTFOT+PAV)
- Tab. 12: Äquisteifigkeitstemperatur bei dem Komplexen Schermodul von 15 kPa
- Tab. 13: Phasenwinkel bei der Äquisteifigkeitstemperatur bei 15 kPa
- Tab. 14: Rohdichten der verwendeten Materialien
- Tab. 15: Granulometrie der Gesteinsarten
- Tab. 16: Übersicht der Mastixvarianten (Pellets)
- Tab. 17: Übersicht der Mastixvarianten (ohne Fasern)
- Tab. 18:Zusammensetzung der Gesteins-
körnung der PA8-Varianten
- Tab. 19:Zusammensetzung der Gesteins-
körnung der PA11-Varianten
- Tab. 20: Ergebnisse der Validierung der Modellberechnung

- Tab. 21: PA8-Varianten für die Untersuchungsserie 1
- Tab. 22: PA11-Varianten für Untersuchungsserie 1
- Tab. 23: Mittelwerte der PA8-Varianten Untersuchungsserie 1
- Tab. 24:Schnittbilder der simulierten Gesteins-
struktur der PA8-Varianten (Serie 1)
- Tab. 25: Mittelwerte der PA11-Varianten Untersuchungsserie 1
- Tab. 26:Schnittbilder der simulierten Gesteins-
struktur der PA11-Varianten (Serie 1)
- Tab. 27: Mittelwerte der PA-Varianten mit Granit -Untersuchungsserie 1
- Tab. 28: Mittelwerte der PA8-Varianten Untersuchungsserie 2
- Tab. 29:Schnittbilder der simulierten Gesteins-
struktur der PA8-Varianten (Serie 2)
- Tab. 30: Mittelwerte der PA11-Varianten Untersuchungsserie 2
- Tab. 31: Schnittbilder der simulierten Gesteinsstruktur der PA11-Varianten (Serie 2)
- Tab. 32: Mittelwerte der PA8-Varianten Untersuchungsserie 3
- Tab. 33: Mittelwerte der PA11-Varianten Untersuchungsserie 3
- Tab. 34: Auswahlmatrix der Polymermodifizierten Bitumen
- Tab. 35: Auswahlmatrix der Gummimodifizierten Bitumen
- Tab. 36:Variantenmatrix der abschließenden
Asphaltuntersuchungen
- Tab. 37: Mittelwerte der akustischen Eigenschaften - Untersuchungsserie 4
- Tab. 38:Hohlraumgehalte der Bohrkerne aus der
Untersuchungsserie 4
- Tab. 39: Masseverlust nach OVP der PA8-Varianten
- Tab. 40: Masseverluste nach OVP der PA11-Varianten
- Tab. 41: Temperaturen bei einer Biegekriechsteifigkeit von 300 MPa und dem m-Wert von 0,3 (nach BAV + Frost-Tau-Wechsel)

Tab. 42:	Bewertungskriterien
----------	---------------------

- Tab. 43: Beurteilung der Variation der PA8-Sieblinien
- Tab. 44: Beurteilung der Variation der PA11-Sieblinien
- Tab. 45: Beurteilung der Kornformvariation -PA8-Varianten
- Tab. 46: Beurteilung der Kornformvariation -PA11-Varianten
- Tab. 47: Bewertung der Mastixvariation PA8
- Tab. 48: Bewertung der Mastixvariation PA11
- Tab. 49: Bewertung der abschließenden Asphaltuntersuchungen

Anhang

Bild A-1: Projektablauf

		M1.1		M1.2		Γ	M2.1	M2.2		
Tempe- ratur	Frequenz	Phasen- winkel	Kompl. Schermodul	Phasen- winkel	Kompl. Schermodul	Phasen- winkel	Kompl. Schermodul	Phasen- winkel	Kompl. Schermodul	
[°C]	[Hz]	[°]	[Pa]	[°]	[Pa]	[°]	[Pa]	[°]	[Pa]	
30	0,1	52,7	306.140	49,0	492.290	38,1	738.490	36,1	1.031.040	
30	1	55,0	1.247.800	52,0	1.805.300	43,1	2.098.900	40,9	2.748.650	
30	1,592	55,0	1.679.250	52,1	2.384.600	43,9	2.653.950	41,7	3.428.650	
30	5	54,0	3.417.938	51,4	4.688.500	44,7	4.749.313	42,5	5.965.750	
30	10	52,9	5.210.500	50,8	7.008.938	44,9	6.763.813	42,8	8.354.063	
20	0,1	52,2	1.696.500	48,9	2.459.200	41,3	2.737.400	39,0	3.558.400	
20	1	49,7	6.414.700	47,3	8.576.100	42,2	8.140.450	40,2	9.930.100	
20	1,592	48,7	8.341.250	46,5	11.001.000	42,0	10.193.150	40,0	12.291.000	
20	5	45,9	15.371.250	44,0	19.772.500	40,7	17.436.875	38,8	20.540.000	
20	10	44,0	21.854.375	42,3	27.708.125	39,6	23.871.875	37,9	27.745.000	
10	0,1	46,8	9.623.417	47,4	11.075.583	40,7	11.624.167	38,9	13.835.833	
10	1	40,5	29.526.000	40,8	34.519.000	36,9	31.452.000	35,5	35.755.500	
10	1,592	39,2	36.464.500	39,2	42.722.500	36,1	38.109.500	34,7	42.946.500	
10	5	35,7	58.942.500	35,3	69.258.125	33,3	59.733.125	32,0	66.441.250	
10	10	33,7	77.392.500	33,2	90.513.750	31,8	77.115.625	30,6	84.949.375	
0	0,1	38,1	44.733.750	37,8	52.527.500	36,0	45.380.000	32,8	53.740.000	
0	1	30,9	106.925.000	30,4	123.265.000	30,0	103.899.000	28,2	114.820.000	
0	1,592	29,2	126.385.000	28,6	145.255.000	28,4	122.465.000	26,9	133.590.000	
0	5	25,7	180.793.750	25,1	206.212.500	25,2	174.025.000	24,1	186.200.000	
0	10	23,8	219.312.500	23,1	248.775.000	23,5	210.425.000	22,6	223.281.250	
-10	0,1	26,1	171.650.000	25,5	195.237.500	25,6	162.737.500	24,6	172.925.000	
-10	1	20,1	305.710.000	19,6	341.460.000	20,3	287.035.000	19,7	300.355.000	
-10	1,592	18,8	340.730.000	18,3	379.505.000	19,0	320.070.000	18,5	334.950.000	
-10	5	16,0	427.256.250	15,6	472.912.500	16,3	403.912.500	16,0	419.587.500	
-10	10	14,5	480.418.750	14,1	530.025.000	14,9	456.381.250	14,6	472.250.000	

Tab. A-2: Rheologische Eigenschaften der Mastixvarianten

			M3.1		M3.2		M4.1	M4.2		
Tempe- ratur	Frequenz	Phasen- winkel	Kompl. Schermodul	Phasen- winkel	Kompl. Schermodul	Phasen- winkel	Kompl. Schermodul	Phasen- winkel	Kompl. Schermodul	
[°C]	[Hz]	[°]	[Pa]	[°]	[Pa]	[°]	[Pa]	[°]	[Pa]	
30	0,1	56,0	114.960	54,4	193.570	49,6	186.180	42,2	412.890	
30	1	58,9	516.925	57,4	822.485	53,5	722.455	47,4	1.314.850	
30	1,592	59,1	711.095	57,7	1.119.300	53,8 968.195		48,1	1.700.300	
30	5	58,9	1.529.188	57,5	2.368.813	53,9	1.950.500	48,7	3.206.375	
30	10	58,2	2.422.688	57,0	3.717.188	53,3	2.971.313	48,6	4.702.250	
20	0,1	56,8	699.980	54,8	1.129.000	50,9	961.280	44,6	1.782.400	
20	1	54,9	3.004.550	53,3	4.590.650	50,1	3.588.700	45,3	5.716.350	
20	1,592	54,1	4.018.250	52,6	6.076.050	49,5	4.677.050	45,0	7.257.500	
20	5	51,5	7.955.813	49,9	11.789.375	47,7	8.756.563	43,7	12.889.375	
20	10	49,7	11.816.250	48,0	17.321.250	46,3	12.622.500	42,7	18.065.625	
10	0,1	51,3	4.884.167	49,7	7.301.958	47,6	5.201.208	43,4	8.083.667	
10	1	45,0	16.929.500	43,6	24.068.000	43,1	16.694.500	40,0	23.428.000	
10	1,592	43,6	21.380.500	42,2	30.062.500	42,0	20.879.000	39,1	28.756.000	
10	5	39,8	36.684.375	38,2	50.850.625	39,0	35.309.375	36,4	47.036.875	
10	10	37,6	49.678.750	36,0	67.938.125	37,3	47.565.625	34,9	62.148.750	
0	0,1	41,4	27.403.750	38,8	40.565.000	39,9	26.290.000	37,6	35.681.250	
0	1	33,8	71.876.000	32,0	97.320.500	34,1	66.740.500	32,4	85.356.500	
0	1,592	32,0	86.432.500	30,3	115.450.000	32,6	80.122.500	31,0	101.515.000	
0	5	28,2	127.993.750	26,6	167.281.250	29,4	119.962.500	27,9	148.900.000	
0	10	26,2	158.237.500	24,6	204.068.750	27,6	149.793.750	26,2	183.850.000	
-10	0,1	28,2	123.212.500	27,0	158.525.000	29,9	108.287.500	28,6	134.037.500	
-10	1	21,8	229.635.000	21,0	284.905.000	24,0	213.260.000	23,1	254.945.000	
-10	1,592	20,4	258.300.000	19,5	318.975.000	22,7	242.805.000	21,8	289.240.000	
-10	5	17,6	330.550.000	16,7	404.368.750	19,7	320.068.750	19,0	377.162.500	
-10	10	16,0	375.912.500	15,2	457.275.000	18,1	370.781.250	17,5	434.218.750	

Tab. A-3: Rheologische Eigenschaften der Mastixvarianten (Fortsetzung)

		I	M5.1	M5.2		ſ	W6.1	M6.2		
Tempe- ratur	Frequenz	Phasen- winkel	Kompl. Schermodul	Phasen- winkel	Kompl. Schermodul	Phasen- winkel	Kompl. Schermodul	Phasen- winkel	Kompl. Schermodul	
[°C]	[Hz]	[°]	[Pa]	[°]	[Pa]	[°]	[Pa]	[°]	[Pa]	
30	0,1	60,5	101.993	56,2	157.990	62,4	72.098	59,7	122.530	
30	1	62,5	505.915	58,9	700.665	65,8	387.615	63,3	611.090	
30	1,592	62,5	709.735	59,1	962.535	66,1	558.035	63,6	864.050	
30	5	61,5	1.589.000	58,3	2.066.063	65,9	1.325.938	63,2	1.981.813	
30	10	60,6	2.569.875	57,5	3.253.875	65,1	2.226.188	62,4	3.258.688	
20	0,1	60,2	688.000	56,3	967.970	63,4	558.300	60,9	805.450	
20	1	57,0	3.190.950	53,9	4.050.550	61,8	2.921.850	59,6	3.950.850	
20	1,592	55,9	4.310.500	52,9	5.369.200	60,8	4.088.300	58,5	5.453.200	
20	5	52,4	8.693.938	50,0	10.431.875	57,5	8.847.563	55,1	11.460.625	
20	10	50,2	12.901.875	48,0	15.271.250	55,1	13.795.000	52,6	17.462.500	
10	0,1	53,7	4.991.458	50,9	6.191.375	57,9	5.155.333	55,9	6.849.042	
10	1	46,0	18.010.000	44,3	20.776.000	50,2	21.093.000	48,0	26.386.000	
10	1,592	44,4	22.820.000	42,9	26.012.500	48,3	27.486.000	46,1	33.923.500	
10	5	40,1	39.275.000	39,0	44.333.750	43,3	49.759.375	41,1	59.525.625	
10	10	37,7	53.152.500	36,8	59.550.000	40,4	68.977.500	38,2	81.190.000	
0	0,1	41,5	30.162.500	40,4	33.813.750	44,5	39.363.750	43,6	45.460.000	
0	1	33,7	77.106.500	33,6	83.780.500	35,0	107.780.000	33,7	120.875.000	
0	1,592	31,9	92.142.000	31,8	100.056.500	32,8	129.890.000	31,5	144.790.000	
0	5	28,1	135.956.250	28,0	147.993.750	28,1	192.368.750	26,9	211.375.000	
0	10	26,0	167.581.250	26,0	182.456.250	25,6	236.825.000	24,5	257.887.500	
-10	0,1	28,6	127.512.500	29,0	136.012.500	28,1	191.175.000	27,0	209.525.000	
-10	1	22,0	238.625.000	22,6	254.475.000	20,4	348.795.000	19,6	372.130.000	
-10	1,592	20,5	268.395.000	21,1	287.295.000	18,8	389.205.000	18,1	413.775.000	
-10	5	17,7	343.856.250	18,0	371.250.000	15,6	485.318.750	15,0	511.737.500	
-10	10	16,2	391.662.500	16,5	423.781.250	14,0	543.100.000	13,5	570.387.500	

Tab. A-4: Rheologische Eigenschaften der Mastixvarianten (Fortsetzung)

		M7.1		M7.2		Г	M8.1	M8.2		
Tempe- ratur	Frequenz	Phasen- winkel	Kompl. Schermodul	Phasen- winkel	Kompl. Schermodul	Phasen- winkel	Kompl. Schermodul	Phasen- winkel	Kompl. Schermodul	
[°C]	[Hz]	[°]	[Pa]	[°]	[Pa]	[°]	[Pa]	[°]	[Pa]	
30	0,1	44,0	551.200	40,7	908.880	56,4	371.810	54,5	678.360	
30	1	48,2	1.865.200	45,6	2.801.750	54,5	1.583.650	52,4	2.678.300	
30	1,592	48,4	2.434.000	46,0	3.589.600	53,8	2.122.850	51,7	3.527.750	
30	5	47,9	4.585.750	45,6	6.565.938	51,7	4.216.563	49,4	6.788.313	
30	10	47,0	6.656.500	45,1	9.366.938	50,3	6.276.688	48,0	9.864.313	
20	0,1	46,4	2.519.700	43,7	3.822.300	51,0	2.239.300	48,4	3.795.800	
20	1	44,3	8.246.550	42,3	11.697.500	46,4	7.854.650	44,1	12.358.500	
20	1,592	43,5	10.411.500	41,5	14.602.500	45,3	10.002.100	43,1	15.513.000	
20	5	41,0	17.974.375	39,0	24.630.625	42,5	17.625.625	40,3	26.470.625	
20	10	39,4	24.540.625	37,5	33.145.625	40,8	24.236.875	38,7	35.933.750	
10	0,1	42,2	12.213.333	40,2	17.517.917	43,2	11.425.417	41,1	17.820.000	
10	1	36,4	33.229.000	34,6	44.884.000	37,5	31.750.500	35,9	46.423.500	
10	1,592	35,2	40.000.500	33,4	53.328.000	36,5	38.325.500	34,9	55.316.500	
10	5	31,9	62.074.375	30,0	81.148.125	33,3	60.352.500	31,6	85.518.750	
10	10	30,1	78.983.125	28,2	102.168.750	31,5	77.600.000	30,0	108.768.750	
0	0,1	33,0	52.620.000	31,4	70.380.000	34,5	48.002.500	33,2	68.092.500	
0	1	27,2	110.470.000	25,6	140.290.000	29,0	103.880.000	28,0	141.585.000	
0	1,592	25,7	128.235.000	24,2	160.945.000	27,6	120.825.000	26,6	163.970.000	
0	5	22,7	175.756.250	21,3	216.837.500	24,5	169.743.750	23,4	228.431.250	
0	10	21,2	208.156.250	19,8	254.031.250	22,8	203.793.750	21,8	271.975.000	
-10	0,1	23,2	167.775.000	21,9	206.762.500	25,0	160.600.000	24,2	212.400.000	
-10	1	18,2	278.485.000	17,3	331.745.000	19,7	277.110.000	19,2	356.645.000	
-10	1,592	17,1	308.125.000	16,1	365.765.000	18,4	308.405.000	17,9	395.550.000	
-10	5	14,9	379.693.750	14,0	446.756.250	15,9	387.106.250	15,3	493.581.250	
-10	10	13,7	423.762.500	13,0	495.843.750	14,6	435.375.000	14,1	552.193.750	

Tab. A-5: Rheologische Eigenschaften der Mastixvarianten (Fortsetzung)

		I	W 9.1	Γ	M 9.2	ſ	M5.3	M3.3		
Tempe- ratur	Frequenz	Phasen- winkel	Kompl. Schermodul	Phasen- winkel	Kompl. Schermodul	Phasen- winkel	Kompl. Schermodul	Phasen- winkel	Kompl. Schermodul	
[°C]	[Hz]	[°]	[Pa]	[°]	[Pa]	[°]	[Pa]	[°]	[Pa]	
30	0,1	55,0	313.090	52,5	420.310	61,7	57.308	56,5	81.777	
30	1	54,7	1.300.900	52,7	1.618.400	63,5	289.725	59,9	377.342	
30	1,592	54,1	1.741.050	52,3	2.136.850	63,6	406.015	60,2	523.104	
30	5	52,1	3.463.313	50,7	4.168.563	63,2	928.663	60,3	1.147.469	
30	10	50,7	5.169.375	49,7	6.149.438	62,3	1.516.188	60,3	1.811.850	
20	0,1	50,5	1.831.000	47,9	2.274.900	61,7	376.010	58,0	502.058	
20	1	46,6	6.351.600	45,4	7.456.200	59,4	1.831.400	56,8	2.259.045	
20	1,592	45,7	8.072.350	44,7	9.416.150	58,3	2.502.450	56,0	3.056.030	
20	5	43,1	14.252.500	42,4	16.494.375	55,1	5.202.188	53,5	6.212.794	
20	10	41,6	19.767.500	41,0	22.750.000	52,8	7.900.500	51,6	9.379.550	
10	0,1	43,7	8.709.208	42,5	10.138.208	56,3	2.855.792	53,2	3.654.900	
10	1	38,8	24.381.500	38,4	27.661.000	48,8	11.120.000	47,1	13.429.500	
10	1,592	37,9	29.525.500	37,6	33.378.500	47,1	14.321.500	45,6	17.137.400	
10	5	34,8	47.583.750	34,4	53.686.875	42,8	25.567.500	41,8	30.058.688	
10	10	33,1	62.002.500	32,8	69.809.375	40,4	35.394.375	39,6	41.288.938	
0	0,1	36,3	34.483.750	36,0	39.153.750	47,0	16.672.500	42,2	23.173.333	
0	1	31,3	78.339.500	31,3	87.072.000	37,3	49.249.500	35,4	61.158.050	
0	1,592	29,8	92.811.000	29,8	102.534.000	35,2	60.354.500	33,6	74.050.650	
0	5	26,6	134.650.000	26,5	148.543.750	31,0	92.740.000	29,9	111.885.625	
0	10	25,0	164.156.250	24,8	180.850.000	28,7	116.950.000	27,9	140.126.250	
-10	0,1	27,6	116.437.500	27,7	128.650.000	31,4	86.588.750	30,3	103.945.833	
-10	1	22,5	213.320.000	22,5	233.215.000	24,2	172.470.000	24,1	203.026.000	
-10	1,592	21,2	240.545.000	21,0	263.800.000	22,7	196.275.000	22,4	232.274.500	
-10	5	18,4	311.543.750	18,0	342.350.000	19,6	257.506.250	19,2	304.901.875	
-10	10	17,1	357.162.500	16,6	391.468.750	17,9	297.350.000	17,5	351.316.250	

Tab. A-6: Rheologische Eigenschaften der Mastixvarianten (Fortsetzung)

			Siebdu	urchgang [M	%]			
Variante	0,063	0,125	0,50	1	2	5,6	8	11,2
PA8_1	2,8	3,2	3,9	4,4	4,9	5,0	100	100
PA8_2	3,9	4,4	5,7	6,5	7,2	12,0	90,1	100
PA8_3	2,8	3,2	3,9	4,4	4,9	5,0	89,4	100
PA8_4	3,3	3,9	6,2	7,4	8,6	20,1	91,1	100
PA8_5	4,7	5,4	7,5	8,7	10,0	11,9	100	100
PA8_6	4,7	5,4	7,3	8,6	9,8	10,0	95,0	100
PA8_7	4,6	5,0	5,0	5,0	5,0	5,0	89,4	100
PA8_8	5,8	6,3	6,5	6,5	6,5	14,0	95,0	100
PA8_9	5,8	6,6	8,7	9,9	11,1	16,0	97,0	100
PA8_10	4,6	5,2	5,9	6,4	6,9	12,0	100	100
PA8_11	4,6	5,2	6,3	6,5	6,8	14,7	90,5	100
PA8_12	4,7	5,3	7,0	7,8	8,5	14,8	100	100
PA8_13	4,6	5,2	6,5	7,0	7,5	12,8	97,0	100
PA8_14	4,9	5,3	5,5	5,5	5,5	13,0	90,3	100
PA8_15	5,0	5,5	6,3	6,3	6,3	21,7	91,3	100
PA8_16	4,7	5,4	7,8	9,0	10,2	14,9	97,0	100
PA8_17	4,7	5,4	7,3	8,6	9,8	10,0	89,9	100
PA8_18	3,7	4,4	6,3	7,6	8,8	9,0	98,0	100
PA8_19	4,7	5,4	7,3	8,6	9,8	10,0	92,0	100
PA8_20	4,7	5,5	7,5	8,7	9,9	12,0	90,1	100

Tab. A-7: Übersicht der Siebdurchgänge der 20 PA8-Varianten der Voruntersuchungen

			Sie	bdurchga	ng [M%]				
Varianten	0,063	0,125	0,50	1	2	5,6	8	11,2	16
PA11_21	2,8	3,2	3,9	4,4	4,9	5,0	5,0	100	100
PA11_22	3,0	3,3	4,3	4,8	5,3	7,3	12,0	89,4	100
PA11_23	2,8	3,2	3,9	4,4	4,9	5,0	5,0	88,5	100
PA11_24	3,9	4,4	5,6	6,3	7,0	7,4	12,0	89,4	100
PA11_25	5,0	5,6	7,6	8,6	9,6	14,5	22,0	97,0	100
PA11_26	4,8	5,5	7,0	8,0	9,0	9,3	13,0	100	100
PA11_27	4,8	5,4	6,1	6,6	7,1	7,5	13,0	96,0	100
PA11_28	4,6	5,0	5,0	5,0	5,0	5,0	5,0	88,5	100
PA11_29	4,7	5,4	7,3	8,6	9,8	10,0	10,0	89,0	100
PA11_30	4,6	5,1	5,6	5,6	5,6	11,5	15,5	89,8	100
PA11_31	4,6	5,2	6,0	6,5	7,0	7,8	12,4	89,5	100
PA11_32	4,7	5,1	6,4	6,4	6,4	19,6	20,0	90,3	100
PA11_33	4,7	5,4	7,4	8,4	9,4	14,8	15,0	100	100
PA11_34	3,9	4,5	6,1	7,0	8,0	8,4	13,0	89,5	100
PA11_35	3,8	4,2	4,6	4,8	5,1	5,2	8,0	93,0	100
PA11_36	4,7	5,4	7,3	8,3	9,3	13,0	15,0	100	100
PA11_37	4,7	5,3	6,0	6,5	7,0	7,2	10,0	94,0	100
PA11_38	4,7	5,4	7,4	8,3	9,3	13,9	15,0	100	100
PA11_39	5,7	6,4	8,2	9,1	10,1	12,2	15,0	93,0	100
PA11_40	6,0	6,8	8,6	9,6	10,6	13,4	13,5	89,5	100

Tab. A-8: Übersicht der Siebdurchgänge der 20 PA11-Varianten der Voruntersuchungen

	PA8_1	PA8_2	PA8_3	PA8_4	PA8_5	PA8_6	PA8_7	PA8_8	PA8_9	PA8_10
	[M%]									
Kalksteinfüller 5/90	3,0	4,0	3,0	3,0	5,0	5,0	5,0	6,0	6,0	5
0/2	2,0	3,0	2,0	5,0	5,0	5,0			5,0	2
2/5					2,0					5
5/8 Unterkorn		5,0		12,0				8,0	5,0	
5/8 rein	95,0	78,0	84,0	71,0	88,0	85,0	84,5	81,0	81,0	88,0
5/8 Überkorn		10,0	11,0	9,0		5,0	10,5	5,0	3,0	
Summe	100	100	100	100	100	100	100	100	100	100
Bindemittel [M%]	5,9	5,9	5,9	5,9	6,5	5,9	6,4	6,5	6,4	6,4
Bindemittelträger [M%]	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
ges. Bindemittel [M%]	6,0	6,0	6,0	6,0	6,6	6,0	6,5	6,6	6,5	6,5
Raumdichte [g/cm ³]	1,897	1,900	1,868	1,941	1,976	1,950	1,911	1,922	1,959	1,947
Hohlraumgehalt [Vol%]										
MPK	26,7	26,6	27,8	25,0	22,8	24,6	25,5	24,9	23,6	24,1
Modell	24,3	27,7	28,7	21,9	20,9	22,6	23,4	26,8	17,7	24,4

Tab. A-9: Zusammensetzung der Varianten PA8_1 bis PA8_10 der Voruntersuchungen

	PA8_11	PA8_12	PA8_13	PA8_14	PA8_15	PA8_16	PA8_17	PA8_18	PA8_19	PA8_20
	[M%]									
Kalksteinfüller 5/90	5,0	5,0	5,0	5,0	5,0	5,0	5,0	4,0	5,0	5
0/2	1,0	3,0	2,0			5,0	5,0	5,0	5,0	5
2/5	9,0	7,0	6,0		5,0	5,0				
5/8 Unterkorn				8,0	12,0					2,0
5/8 rein	75,5	85,0	84,0	77,3	69,5	82,0	80,0	89,0	90,0	78,0
5/8 Überkorn	9,5		3,0	9,7	8,5	3,0	10,0	2,0		10,0
Summe	100	100	100	100	100	100	100	100	100	100
Bindemittel [M%]	6,4	6,4	5,9	5,9	6,4	6,5	6,5	6,5	6,5	5,9
Bindemittelträger [M%]	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
ges. Bindemittel [M%]	6,5	6,5	6	6	6,5	6,6	6,6	6,6	6,6	6
Raumdichte [g/cm ³]	1,971	1,975	1,931	1,877	1,956	1,989	1,970	1,955	2,002	1,961
Hohlraumgehalt [Vol%]										
MPK	23,1	23,0	25,3	27,4	23,7	22,3	23,1	23,7	21,8	24,2
Modell	21,3	21,0	27,5	30,2	20,6	13,7	19,2	22,2	22,1	22,2

Tab. A-10: Zusammensetzung der Varianten PA8_11 bis PA8_20 der Voruntersuchungen

	PA11_21	PA11_22	PA11_23	PA11_24	PA11_25	PA11_26	PA11_27	PA11_28	PA11_29	PA11_30
	[M%]									
Kalksteinfüller 5/90	3,0	3,0	3,0	4,0	5,0	5,0	5,0	5,0	5,0	5,0
0/2	2,0	2,0	2,0	3,0	4,0	4,0	2,0		5,0	
2/5		2,0			5,0					6,0
5/8										5,0
8/11 Unterkorn		5,0		5,0	8,0	4,0	6,0			
8/11 rein	95,0	77,5	83,5	77,4	75,0	87,0	83,0	83,5	79,0	74,0
8/11 Überkorn		10,5	11,5	10,6	3,0		4,0	11,5	11,0	10,0
Summe	100	100	100	100	100	100	100	100	100	100
Bindemittel [M%]	5,6	5,3	5,6	5,6	6,5	6,5	5,6	6,5	5,6	6,5
Bindemittelträger [M%]	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
ges. Bindemittel [M%]	5,7	5,4	5,7	5,7	6,6	6,6	5,7	6,6	5,7	6,6
Raumdichte [g/cm ³]	1,889	1,885	1,874	1,919	1,999	1,950	1,906	1,936	1,926	1,940
Hohlraumgehalt [Vol%]										
MPK	27,7	28,2	28,2	26,5	22,2	24,2	27,0	24,7	26,2	24,5
Modell	21,4	26,4	24,8	18,9	16,7	26,6	23,6	26,2	25,7	23,6

Tab. A-11: Zusammensetzung der Varianten PA11_21 bis PA11_30 der Voruntersuchungen

	PA11_31	PA11_32	PA11_33	PA11_34	PA11_35	PA11_36	PA11_37	PA11_38	PA11_39	PA11_40
	[M%]									
Kalksteinfüller 5/90	5,0	5,0	5,0	4,0	4,0	5,0	5,0	5,0	6,0	6,5
0/2	2,0		4,0	4,0	1,0	4,0	2,0	4,0	4,0	4,0
2/5		15,0	6,0			4,0		5,0	2,0	3,0
5/8	6,0									
8/11 Unterkorn				5,0	3,0	2,0	3,0	1,0	3,0	
8/11 rein	76,5	70,0	85,0	76,5	85,0	85,0	84,0	85,0	78,0	76,0
8/11 Überkorn	10,5	10,0		10,5	7,0		6,0		7,0	10,5
Summe	100	100	100	100	100	100	100	100	100	100
Bindemittel [M%]	6,5	6,5	6,5	5,6	5,6	6,5	5,6	6,5	6,5	6,5
Bindemittelträger [M%]	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
ges. Bindemittel [M%]	6,6	6,6	6,6	5,7	5,7	6,6	5,7	6,6	6,6	6,6
Raumdichte [g/cm ³]	1,969	2,052	2,028	1,913	1,870	1,980	1,909	1,928	2,002	2,012
Hohlraum [Vol%]										
МРК	23,4	20,2	21,1	26,7	28,4	23,0	26,9	25,0	22,1	21,7
Modell	24,1	25,2	27,5	25,7	30,1	21,1	20,1	21,9	24,0	22,3

Tab. A-12: Zusammensetzung der Varianten PA11_31 bis PA11_40 der Voruntersuchungen

PA8-Variante	Gesteinsrohdichte	Asphaltrohdichte	Raumdichte MPK	
	[g/cm³]	[g/cm³]	[g/cm³]	
PA8_3_1	2,869	2,554	1,969	
PA8_6_1	2,870	2,555	2,034	
PA8_7_1	2,868	2,553	1,993	
PA8_9_1	2,870	2,555	2,037	
PA8_12_1	8_12_1 2,870		2,026	
PA8_14_1	2,868	2,553	2,004	
PA8_15_1	2,869	2,554	1,900	
PA8_16_1	2,870	2,555	2,038	
PA8_17_1	2,870	2,555	2,034	
PA8_19_1	2,870	2,555	2,028	

Tab. A-13: Mittelwerte der ermittelten Dichten der PA8-Varianten der Untersuchungsserie 1

PA11-Variante	Gesteinsrohdichte	Asphaltrohdichte	Raumdichte MPK	
	[g/cm³]	[g/cm³]	[g/cm³]	
PA11_25_1	2,884	2,565	2,099	
PA11_28_1	2,893	2,572	1,940	
PA11_29_1	2,893	2,572	2,004	
PA11_30_1 2,891		2,570	2,023	
PA11_32_1	2,892	2,571	2,039	
PA11_33_1	2,884	2,565	2,061	
PA11_34_1	2,893	2,572	2,019	
PA11_35_1	1_35_1 2,889		1,966	
PA11_39_1	2,890	2,569	2,019	
PA11_40_1	2,893	2,572	2,011	

Tab. A-14: Mittelwerte der ermittelten Dichten der PA11-Varianten der Untersuchungsserie 1

PA-Varianten	Gesteinsrohdichte Asphaltrohdichte		Raumdichte MPK		
mit Granit	[g/cm³]	[g/cm³]	[g/cm³]		
PA8_6G_1	2,641	2,391	1,911		
PA8_7G_1	2,641	2,391	1,932		
PA8_19G_1 2,641		2,391	1,912		
PA11_28G_1	2,640	2,390	1,823		
PA11_29G_1	2,640	2,390	1,884		
PA11_32G_1	2,640	2,390	1,951		

Tab. A-15: Mittelwerte der ermittelten Dichten der PA-Varianten mit Granit der Untersuchungsserie 1

PA8-Variante	Fl-7ahl	Gesteinsrohdichte	Asphaltrohdichte	Raumdichte MPK	
	i i-zam	[g/cm³]	[g/cm³]	[g/cm³]	
PA8_6_2	0	2,858	2,562	2,010	
PA8_6_2	10	2,858	2,562	2,031	
PA8_6_2	20	2,858	2,858 2,562		
PA8_7_2	0	2,861 2,565		1,942	
PA8_7_2	10	2,861	2,861 2,565		
PA8_7_2	20	2,861	2,565	2,052	
PA8_9_2	0	2,858	2,562	2,021	
PA8_9_2	10	2,858	2,562	1,986	
PA8_9_2	20	2,858	2,562	2,055	
PA8_14_2	0	2,861	2,565	1,954	
PA8_14_2	10	2,861	2,565	1,983	
PA8_14_2	20	2,861	2,565	2,005	

Tab. A-16: Mittelwerte der ermittelten Dichten der PA8-Varianten der Untersuchungsserie 2

PA11-Varianto	Fl-Zahl	Gesteinsrohdichte	Asphaltrohdichte	Raumdichte MPK	
TATT-Variance	i i-zaili	[g/cm³]	[g/cm³]	[g/cm³]	
PA11_28_2	0	2,855	2,560	1,895	
PA11_28_2	10	2,855	2,560	1,921	
PA11_28_2	20	2,855	2,560	1,945	
PA11_29_2	0	2,853	2,559	2,025	
PA11_29_2	10	2,853	2,559	2,037	
PA11_29_2	20	2,853	2,559	2,021	
PA11_33_2	0	2,854	2,560	2,004	
PA11_33_2	10	2,854	2,560	2,043	
PA11_33_2	20	2,854	2,560	2,021	
PA11_39_2	0	2,853	2,559	2,005	
PA11_39_2	10	2,853	2,559	2,017	
PA11_39_2	20	2,853	2,559	2,002	

Tab. A-17: Mittelwerte der ermittelten Dichten der PA11-Varianten der Untersuchungsserie 2

PA8-Variante	Gesteinsrohdichte	Asphaltrohdichte	Raumdichte MPK	
TAO-Variante	[g/cm³]	[g/cm³]	[g/cm³]	
PA8_14_3_M1.1	2,863	2,566	1,936	
PA8_14_3_M1.2	2,854	2,559	1,943	
PA8_14_3_M3.1	2,863	2,566	1,950	
PA8_14_3_M3.2	2,854	2,559	1,950	
PA8_14_3_M4.1	2,863	2,566	1,975	
PA8_14_3_M4.2	2,854	2,559	1,971	
PA8_14_3_M5.1	2,863	2,566	1,978	
PA8_14_3_M5.2	2,854	2,559	1,953	
PA8_14_3_M6.1	2,863	2,566	1,928	
PA8_14_3_M6.2	2,854	2,559	1,931	
PA8_14_3_M7.1	2,863	2,566	1,953	
PA8_14_3_M7.2	2,854	2,559	1,960	
PA8_14_3_M8.1	2,863	2,566	1,952	
PA8_14_3_M8.2	2,854	2,559	1,935	
PA8_14_3_M9.1	2,863	2,566	1,935	
PA8_14_3_M9.2	2,854	2,559	1,919	

Tab. A-18: Mittelwerte der ermittelten Dichten der PA8-Varianten der Untersuchungsserie 3

PA11-Variante	Gesteinsrohdichte Asphaltrohdichte		Raumdichte MPK	
	[g/cm³]	[g/cm³]	[g/cm³]	
PA11_28_3_M3.1	2,857	2,562	1,921	
PA11_28_3_M3.2 2,848		2,519 1,923		
PA11_28_3_M9.1	2,857	2,562	1,944	
PA11_28_3_M9.2 2,848		2,519	1,935	

Tab. A-19: Mittelwerte der ermittelten Dichten der PA11-Varianten der Untersuchungsserie 3

PA-Variante	Gesteinsrohdichte	Asphaltrohdichte	Raumdichte MPK	
	[g/cm³]	[g/cm³]	[g/cm³]	
PA8_6_4_M3.1	PA8_6_4_M3.1 2,860		2,025	
PA8_6_4_M9.1	2,860	2,564	2,027	
bPA8_14_4_M3.1	2,863	2,566	1,953	
PA8_14_4_M9.1 2,863		2,566	1,960	
PA8_14G_4_M3.1	2,643	2,385	1,858	
PA8_14G_4_M9.1	2,643	2,385	1,916	
PA11_28_4_M9.2	2,857	2,562	1,921	
PA11_28_4_M9.2	2,857	2,562	1,944	

Tab. A-20: Mittelwerte der ermittelten Dichten der PA-Varianten der abschließenden Asphaltuntersuchungen

Schriftenreihe Berichte der Bundesanstalt für Straßenwesen

Unterreihe "Straßenbau"

2021

S 147: Numerische Modellierung der Lysimeteruntersuchungen der BASt

Birle, Cudmani, Melsbach

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden.

S 148: Ermittlung und Prognose von Spannungszuständen in Betonfahrbahndecken

Freudenstein, Eger, Pichottka, Riwe, K. Villaret, S. Villaret, Frohböse Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden.

S 149: Untersuchungen zur Durchsickerung von RC-Baustoffen und industriellen Nebenprodukten bei Bauweisen für technische Sicherungsmaßnahmen

Koukoulidou, Birle, Cudmani

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden.

S 150: Abschätzung des Restwerts im PMS am Ende des Bewertungszeitraums

Stöckner, Sagnol, Brzuska, Wellner, Blasl, Sommer, Krause, Komma € 19,50

S 151: Prognose der Griffigkeitsentwicklung von Waschbetonfahrbahndecken mit der Prüfanlage nach Wehner/Schulze Klein, Gehlen, Kränkel

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden.

S 152: Wiederverwendung von RC-Baustoffen aus AKR-geschädigten Betonfahrbahndecken

Mielich

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden.

S 153: Optimierung von Fugensystemen in Betonfahrbahndecken – Messtechnische Grundlage zur Ermittlung realer Beanspruchungen in situ

Recknagel, Spitzer, Hoppe, Wenzel, Pirskawetz € 23,00

S 154: Prozessoptimierung der Asphaltextraktion mit Oktansäuremethylester (OME)

Büchler, Wistuba

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden.

S 155: KiST-Zonen-Karte RDO und RSO Beton – Verteilungsfunktion und Extremwerte

Villaret, Augter, Kayser, Riwe

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden.

S 156: Asphaltoberbau und extreme Temperaturen

Beckedahl, Schrödter, Koppers, Mansura, Reutter, Thelen Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden.

S 157: Erfassung von Bäumen mittels Laserscan-Daten zur Expositionsanalyse entlang des Bundesfernstraßennetzes in NRW Schipek, Steffen

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden.

S 158: Anforderungen an Baustoffe für schwach durchlässige, dauerhaft tragfähige, ungebundene Bankette Cudmani, Henzinger, Birle, Barka

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden.

S 159: Dauerhafte Betondecken – Optimierung der Fahrbahnoberfläche durch Texturierung mittels Grinding-Verfahren Villaret, Alte-Teigeler, Altreuther, Beckenbauer, Frohböse, Gehlen, Oeser, Skarabis, Tulke, Wang

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden.

S 160: Untersuchungen zur Ursache von Treiberscheinungen in Tragschichten ohne Bindemittel unter Verwendung von RC-Baustoffen aus Beton

Rigo, Unterderweide

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden.

S 161: Ermittlung der realistischen Verkehrsverteilung auf mehrstreifigen Bundesfernstraßen als Eingangsgröße für die rechnerische Dimensionierung und Bewertung der strukturellen Substanz

Kathmann, Schroeder

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden.

S 162: Beurteilung von Betonfahrbahndecken hinsichtlich deren in-situ AKR-Potenzial bei Gesteinskörnungen nach dem ARS Nr. 04/2013

Böhm, Eickschen, Hermerschmidt, Müller, Pierkes Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 163: NANOASPHALT – Optimierung der Gebrauchseigenschaften und der Beständigkeit von Asphaltstraßen unter Nutzung der Nanotechnologie

Beginn, Belke, Oeser, Meyer, Paffrath, Wellner, Clauß, Beckedahl, Koppers, Schmidt, Erdmann, Schmidt, Hofmann Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 164: Untersuchung der Quellempfindlichkeit veränderlich fester Gesteine bei der Verwendung als Erdbaustoff Cudmani, Heyer, Birle, Möller

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 165: Analyse des gefügeabhängigen Löslichkeitsverhaltens potenziell AKR-empfindlicher Gesteinskörnungen

Weise, Oesch, Wilsch, Sigmund, Hünger, Kositz Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 166: Vibrationshammerverfahren zur Bestimmung der Bezugsgröße für den Verdichtungsgrad von Schichten ohne Bindemittel

Demond, Reiche, Haas, Schmidt

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 167: Aktualisierung und Anpassung der Straßenbelastungsdaten für die Dimensionierung

K. Villaret, S. Villaret, Kathmann, Oeser, Ückermann, Schröder, Riwe

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 168: Entwicklung einer Prüfsystematik zur Identifizierung der Bitumenart und der verwendeten Modifizierungsmittel in einem Ausbauasphalt

Gehrke, Stephan, Weigel Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 169: Untersuchung eines praxisbezogenen Instrumentariums zur Bewertung der Risssicherheit von Gussasphalten Radenberg, Holzwarth

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 170: Kriterien für die Dauerhaftigkeit von Asphaltschichten - Untersuchungen zur Ansprache des Haftverhaltens Radenberg, Twer, Louis, Buscham

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

2022

S 171: Informationssystem Straßenzustand Teil 2: Entwicklung von Sensoren zur Erfassung des strukturellen Zustandes von Asphaltstraßen (SENSOR)

Bald, Böhm, Čičković, Tielmann, Hill, Peitsch, Gablovský, Muschalla, Czaja, Ulrich, Farbischewski, Huczek

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 172: Verbesserung der Erfassung des Verhaltens von Tragschichten ohne Bindemittel (ToB) zur Berücksichtigung in den RStO, RDO und den RSO

Wellner, Leischner, Spanier € 16 50

S 173: Analyse der Auswirkungen von Witterungsextremen an bestehenden Straßenbefestigungen in Betonbauweise Villaret, Beckenbauer, Riwe, Tschernack

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 174: Raumdichtebestimmung an hohlraumreichen Asphalten

Dudenhöfer Rückert

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 175: Einfluss der Fugenöffnungsweite auf die akustischen Eigenschaften von Fahrbahndecken aus Beton

Altreuther, Beckenbauer, Ertsey, Otto, Schubert, Kropp, Hoever Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 176: Strömungsmodelle zur Simulation der Durchsickerung von Straßenbauwerken mit Implementierung hydrologischer Parameter

Michaelides, Koukoulidou, Birle, Heyer, Vogt

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 177: Bestimmung von Kenndaten zur sicheren Charakterisierung von Fugenvergussmassen

Breitenbücher, Buckenhüskes, Radenberg, Twer

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 178: Ringversuch zum statischen Spaltzugversuch nach AL Sp-Beton

Weise, Hüsken, Niedack-Nad

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 179: Die neue Autobahnverwaltung des Bundes - das Straßenrecht der Verkehrswende

Durner

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 180: Entwicklung eines aktuellen Verfahrens zur rechnerischen Dimensionierung gemäß den RDO Beton

Kathmann, Hermes, Kucera, Stöver, Neumann, Lehmkuhl,

Pfeifer			€ 14,50

2023

S 181: Möglichkeiten und Grenzen des Georadarverfahrens Hülsbömer, Weßelborg, Gogolin, Mörchen

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 182: Optimierung der Anwendbarkeit der Probabilistik in der Dimensionierung und Substanzbewertung von Betonstraßen

Neumann, Liu, Blasl, Reinhardt

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 183: Potenzialuntersuchung zum Einsatz von Asphalteinlagen

Mollenhauer, Wetekam, Wistuba, Büchler, Al-Qudsi, Falchetto, Kollmus, Trifunović, Schmalz, Ziegler

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 184: Generelle Methodik zur Abschnittsbildung bei der Erhaltung kommunaler Straßen

Berthold, Großmann Dieser Bericht liegt nur in digitaler Form vor und kann unter

https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 185: Potenzialanalyse - Prozesssichere Herstellung lärmarmer Straßen in Betonbauweise OPB - Offenporiger Beton Freudenstein, Bollin, Eger, Klein, Kränkel

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 186: Praxisgerechte Anforderungen an den Polierwiderstand feiner Gesteinskörnungen

Oeser, Schulze, Benninghoff, Renken Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

S 187: Überprüfung der Geotextilrobustheitsklassen hinsichtlich neuer Produktentwicklungen Zanzinger

in Vorbereituna

S 188: Untersuchungen an einer CEM III-Versuchsstrecke auf der BAB A7 bei Wörnitz Kuhnsch

in Vorbereituna

S 189: Optimierung der Zusammensetzung Offenporiger Asphalte zur Verbesserung des Nutzungsverhaltens Radenberg, Breddemann

Dieser Bericht liegt nur in digitaler Form vor und kann unter https://bast.opus.hbz-nrw.de/ heruntergeladen werden

Fachverlag NW in der Carl Ed. Schünemann KG Zweite Schlachtpforte 7 · 28195 Bremen Tel.+(0)421/3 69 03-53 · Fax +(0)421/3 69 03-48

Alternativ können Sie alle lieferbaren Titel auch auf unserer Website finden und bestellen.

www.schuenemann-verlag.de

Alle Berichte, die nur in digitaler Form erscheinen, können wir auf Wunsch als »Book on Demand« für Sie herstellen.