TY - CONF A1 - Fagerlind, Helen A1 - Heinig, I. A1 - Viström, Matias A1 - Wisch, Marcus A1 - Sulzberger, L. A1 - McCarthy, M. A1 - Hulshof, W. A1 - Roynard, M. A1 - Schaub, S. T1 - Analysis of accident data for test scenario definition in the ASSESS project N2 - The overall purpose of the ASSESS project is to develop a relevant and standardised set of test and assessment methods and associated tools for integrated vehicle safety systems, primarily focussing on currently available pre-crash sensing systems. The first stage of the project was to define casualty relevant accident scenarios so that the test scenarios will be developed based on accident scenarios which currently result in the greatest injury outcome, measured by a combination of casualty severity and casualty frequency. The first analysis stage was completed using data from a range of accident databases, including those which were nationally representative (STATS19, UK and STRADA, SE) and in-depth sources which provided more detailed parameters to characterise the accident scenarios (GIDAS, DE and OTS, UK). A common analysis method was developed in order to compare the data from these different sources, and while the data sets were not completely compatible, the majority of the data was aligned in such a way that allowed a useful comparison to be made. As the ASSESS project focuses on pre-crash sensing systems fitted to passenger cars, the data selected for the analysis was "injury accidents which involved at least one passenger car". The accident data analysis yielded the following ranked list of most relevant accident scenarios: Rank Accident scenario 1 Driving accident - single vehicle loss of control 2 Accidents in longitudinal traffic (same and opposite directions) 3 Accidents with turning vehicle(s) or crossing paths in junctions 4 Accidents involving pedestrians The ranked list highlights the relatively large role played by "accidents in longitudinal traffic", and "accidents with turning vehicle(s) or crossing paths in junctions" (the second and third most prevalent accident scenarios, respectively). The pre-crash systems addressed in ASSESS propose to yield beneficial safety outcomes with specific regard to these accident scenarios. This indicates that the ASSESS project is highly relevant to the current casualty crash problem. In the second stage of the analysis a selection of these accident scenarios were analysed further to define the accident parameters at a more detailed level .This paper describes the analysis approach and results from the first analysis stage. KW - Aktives Sicherheitssystem KW - Analyse (math) KW - Bewertung KW - Entwicklung KW - Konferenz KW - Schweregrad (Unfall KW - Verletzung) KW - Standardisierung KW - Statistik KW - Unfall KW - Unfallhäufigkeit KW - Versuch KW - Accident KW - Accident rate KW - Active safety system KW - Analysis (math) KW - Conference KW - Development KW - Evaluation (assessment) KW - Severity (accid KW - injury) KW - Standardization KW - Statistics KW - Test Y1 - 2010 UR - https://bast.opus.hbz-nrw.de/frontdoor/index/index/docId/559 UR - https://nbn-resolving.org/urn:nbn:de:hbz:opus-bast-5594 N1 - Weiterhin beteiligt: Partner des ASSESS WP1 ER -