Eingang zum Volltext in OPUS

Hinweis zum Urheberrecht

InProceedings (Aufsatz / Paper einer Konferenz etc.) zugänglich unter
URL: http://bast.opus.hbz-nrw.de/volltexte/2017/1860/


Analysis of road accident according to road surface condition

Park, Jaehong ; Yun, Dukgeun

Originalveröffentlichung: (2017) 7th International Conference on ESAR "Expert Symposium on Accident Research" 2016
pdf-Format:
Dokument 1.pdf (307 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
Freie Schlagwörter (Deutsch): Analyse (math) , Berechnung , Deutschland , Konferenz , Korea (Süd) (Demokratische Republik) , Korrelation (math, stat) , Mittelwert , Oberflächentextur , Tiefe , Unfall , Wahrscheinlichkeit
Freie Schlagwörter (Englisch): Accident , Analysis (math) , Calculation , Conference , Correlation (math, stat) , Depth , Germany , Mean (math) , Probability , Republic of Corea , Surface texture
Collection 1: BASt-Beiträge / Tagungen / International Conference on ESAR / 7th International Conference on ESAR
Collection 2: BASt-Beiträge / ITRD Sachgebiete / 80 Unfallforschung
Collection 3: BASt-Beiträge / ITRD Sachgebiete / 23 Deckeneigenschaften
Institut: Sonstige
DDC-Sachgruppe: Ingenieurwissenschaften
Sonstige beteiligte Institution: Highway & Transportation Research Institute, Korea Institute of Civil Engineering and Building Technology
Dokumentart: InProceedings (Aufsatz / Paper einer Konferenz etc.)
Sprache: Englisch
Erstellungsjahr: 2017
Publikationsdatum: 17.10.2017
Kurzfassung auf Englisch: In this study, the mean profile depth (MPD) that expresses roughness of road pavements was calculated using the road survey equipment vehicle and the calculated MPD was compared with the real number of traffic accidents. The analysis method used in this study was to classify the appropriate clustering in relation to traffic accidents using the K-means clustering and to compare this with the presence of traffic accidents via the MPDs to derive the result. K-means clustering was used in the analysis method and four clusters were found using the clustering analysis results. The center of each cluster was 0.627, 0.850, 1.118, and 1.237, respectively. The result of this study is expected to be utilized as foundational research in the traffic safety area.