Eingang zum Volltext in OPUS

Hinweis zum Urheberrecht

InProceedings (Aufsatz / Paper einer Konferenz etc.) zugänglich unter
URL: http://bast.opus.hbz-nrw.de/volltexte/2015/1416/


UR:BAN KA-WER: Accident data analysis and pre-crash simulation for the configuration and assessment of driver assistance systems in urban scenarios

Labenski, Volker ; Dobberstein, Jan ; Schlender, Thomas

Originalveröffentlichung: (2015) 6th International Conference on ESAR 2014
pdf-Format:
Dokument 1.pdf (544 KB)

Bookmark bei Connotea Bookmark bei del.icio.us
Freie Schlagwörter (Deutsch): Aktives Sicherheitssystem , Antikollisionssystem , Deutschland , Fahrerassistenzsystem , Konferenz , Leistungsfähigkeit (allg) , Prognose , Schweregrad (Unfall, Verletzung) , Simulation , Stadt , Unfallrekonstruktion , Unfallverhütung ,
Freie Schlagwörter (Englisch): Accident prevention , Accident reconstruction , Active safety system , Collision avoidance system , Conference , Driver assistance system , Efficiency , Forecast , Germany , Severity (accid, injury) , Simulation , Urban area
Collection 1: BASt-Beiträge / ITRD Sachgebiete / 91 Fahrzeugkonstruktion
Collection 2: BASt-Beiträge / Tagungen / International Conference on ESAR / 6th International Conference on ESAR
Collection 3: BASt-Beiträge / ITRD Sachgebiete / 80 Unfallforschung
Institut 1: Abteilung Fahrzeugtechnik
Institut 2: Sonstige
DDC-Sachgruppe: Ingenieurwissenschaften
Dokumentart: InProceedings (Aufsatz / Paper einer Konferenz etc.)
Sprache: Englisch
Erstellungsjahr: 2015
Publikationsdatum: 31.07.2015
Bemerkung: Außerdem beteiligt: Robert Bosch GmbH
Kurzfassung auf Englisch: The project UR:BAN "Cognitive assistance (KA)" aims at developing future assistance systems providing improved performance in complex city traffic. New state-of-the-art panoramic sensor technologies now allow comprehensive monitoring and evaluation of the vehicle environment. In order to improve protection of vulnerable road users such as pedestrians and cyclists, a particular objective of UR:BAN is the evaluation and prediction of their behaviour and actions. The objective of subproject "WER" is development support by providing quantitative estimates of traffic collisions at the very start and predict potential in terms of optimized accident avoidance and reduction of injury severity. For this purpose an integrated computer simulation toolkit is being devised based on real world accidents (GIDAS as well as video documented accidents), allowing the prediction of potential effectiveness and future benefit of assistance systems in this accident scenario. Subsequently, this toolkit may be used for optimizing the design of implemented assistance systems for improved effectiveness.